Search results
Results from the WOW.Com Content Network
In many flight dynamics applications, the Earth frame is assumed to be inertial with a flat x E,y E-plane, though the Earth frame can also be considered a spherical coordinate system with origin at the center of the Earth. The other two reference frames are body-fixed, with origins moving along with the aircraft, typically at the center of gravity.
Most aircraft trimmed for straight-and-level flight, if flown stick-fixed, will eventually develop a tightening spiral-dive. [2] If a spiral dive is entered unintentionally, the result can be fatal. A spiral dive is not a spin; it starts, not with a stall or from torque, but with a random perturbation, increasing roll and airspeed.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate
The position of all three axes, with the right-hand rule for describing the angle of its rotations. An aircraft in flight is free to rotate in three dimensions: yaw, nose left or right about an axis running up and down; pitch, nose up or down about an axis running from wing to wing; and roll, rotation about an axis running from nose to tail.
In ballistics and flight dynamics, axes conventions are standardized ways of establishing the location and orientation of coordinate axes for use as a frame of reference. Mobile objects are normally tracked from an external frame considered fixed. Other frames can be defined on those mobile objects to deal with relative positions for other objects.
An animated illustration of the two motions which combine into a Dutch roll Dutch roll damping technique, scanned from U.S. Air Force flight manual. Dutch roll is an aircraft motion consisting of an out-of-phase combination of "tail-wagging" (yaw) and rocking from side to side (roll).
A diagrammatic representation of a fixed-wing airplane in phugoid. In aviation, a phugoid or fugoid (/ ˈ f juː ɡ ɔɪ d / ⓘ) is an aircraft motion in which the vehicle pitches up and climbs, and then pitches down and descends, accompanied by speeding up and slowing down as it goes "downhill" and "uphill".
The distribution of forces on a wing in flight are both complex and varying. This image shows the forces for two typical airfoils, a symmetrical design on the left, and an asymmetrical design more typical of low-speed designs on the right. This diagram shows only the lift components; the similar drag considerations are not illustrated.