Search results
Results from the WOW.Com Content Network
These compounds form by oxidation of alkali metals with larger ionic radii (K, Rb, Cs). For example, potassium superoxide (KO 2) is an orange-yellow solid formed when potassium reacts with oxygen. Hydrogen peroxide (H 2 O 2) can be produced by passing a volume of 96% to 98% hydrogen and 2 to 4% oxygen through an electric discharge. [7]
Together with its conjugate base superoxide, hydroperoxyl is an important reactive oxygen species.Unlike • O − 2, which has reducing properties, HO • 2 can act as an oxidant in a number of biologically important reactions, such as the abstraction of hydrogen atoms from tocopherol and polyunstaturated fatty acids in the lipid bilayer.
In these compounds, hydrogen can form in the +1 and -1 oxidation states. Hydrogen can form compounds both ionically and in covalent substances. It is a part of many organic compounds such as hydrocarbons as well as water and other organic substances. The H + ion is often called a proton because it has one proton and no electrons, although the ...
The concentration of hydrogen ions and pH are inversely proportional; in an aqueous solution, an increased concentration of hydrogen ions yields a low pH, and subsequently, an acidic product. By definition, an acid is an ion or molecule that can donate a proton, and when introduced to a solution it will react with water molecules (H 2 O) to ...
An oxyanion, or oxoanion, is an ion with the generic formula A x O z− y (where A represents a chemical element and O represents an oxygen atom). Oxyanions are formed by a large majority of the chemical elements. [1] The formulae of simple oxyanions are determined by the octet rule. The corresponding oxyacid of an oxyanion is the compound H z ...
Oxygen gas can also be produced through electrolysis of water into molecular oxygen and hydrogen. DC electricity must be used: if AC is used, the gases in each limb consist of hydrogen and oxygen in the explosive ratio 2:1. A similar method is the electrocatalytic O 2 evolution from oxides and oxoacids.
Water is also central to acid-base neutrality and enzyme function. An acid, a hydrogen ion (H +, that is, a proton) donor, can be neutralized by a base, a proton acceptor such as a hydroxide ion (OH −) to form water. Water is considered to be neutral, with a pH (the negative log of the hydrogen ion concentration) of 7 in an ideal state.
In aqueous solution both hydrogen and hydroxide ions are strongly solvated, with hydrogen bonds between oxygen and hydrogen atoms. Indeed, the bihydroxide ion H 3 O − 2 has been characterized in the solid state. This compound is centrosymmetric and has a very short hydrogen bond (114.5 pm) that is similar to the length in the bifluoride ion ...