enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Binomial theorem - Wikipedia

    en.wikipedia.org/wiki/Binomial_theorem

    In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power ⁠ (+) ⁠ expands into a polynomial with terms of the form ⁠ ⁠, where the exponents ⁠ ⁠ and ⁠ ⁠ are nonnegative integers satisfying ⁠ + = ⁠ and the coefficient ⁠ ⁠ of each term is a specific positive integer ...

  3. Binomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Binomial_coefficient

    In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem. Commonly, a binomial coefficient is indexed by a pair of integers n ≥ k ≥ 0 and is written (). It is the coefficient of the x k term in the polynomial expansion of the binomial power (1 + x) n; this coefficient can be ...

  4. Central binomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Central_binomial_coefficient

    The central binomial coefficients give the number of possible number of assignments of n-a-side sports teams from 2n players, taking into account the playing area side. The central binomial coefficient () is the number of arrangements where there are an equal number of two types of objects.

  5. Gaussian binomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Gaussian_binomial_coefficient

    Like the usual binomial theorem, this formula has numerous generalizations and extensions; one such, corresponding to Newton's generalized binomial theorem for negative powers, is ∏ k = 0 n − 1 1 1 − q k t = ∑ k = 0 ∞ ( n + k − 1 k ) q t k . {\displaystyle \prod _{k=0}^{n-1}{\frac {1}{1-q^{k}t}}=\sum _{k=0}^{\infty }{n+k-1 \choose k ...

  6. Multinomial theorem - Wikipedia

    en.wikipedia.org/wiki/Multinomial_theorem

    This proof of the multinomial theorem uses the binomial theorem and induction on m.. First, for m = 1, both sides equal x 1 n since there is only one term k 1 = n in the sum. For the induction step, suppose the multinomial theorem holds for m.

  7. FOIL method - Wikipedia

    en.wikipedia.org/wiki/FOIL_method

    The word FOIL is an acronym for the four terms of the product: First ("first" terms of each binomial are multiplied together) Outer ("outside" terms are multiplied—that is, the first term of the first binomial and the second term of the second) Inner ("inside" terms are multiplied—second term of the first binomial and first term of the second)

  8. Pascal's rule - Wikipedia

    en.wikipedia.org/wiki/Pascal's_rule

    In mathematics, Pascal's rule (or Pascal's formula) is a combinatorial identity about binomial coefficients.It states that for positive natural numbers n and k, + = (), where () is a binomial coefficient; one interpretation of the coefficient of the x k term in the expansion of (1 + x) n.

  9. General Leibniz rule - Wikipedia

    en.wikipedia.org/wiki/General_Leibniz_rule

    Relationship to the binomial theorem [ edit ] The Leibniz rule bears a strong resemblance to the binomial theorem , and in fact the binomial theorem can be proven directly from the Leibniz rule by taking f ( x ) = e a x {\displaystyle f(x)=e^{ax}} and g ( x ) = e b x , {\displaystyle g(x)=e^{bx},} which gives