Search results
Results from the WOW.Com Content Network
A random vector (that is, a random variable with values in R n) is said to be a white noise vector or white random vector if its components each have a probability distribution with zero mean and finite variance, [clarification needed] and are statistically independent: that is, their joint probability distribution must be the product of the ...
Kuo’s book White Noise Distribution Theory provided an introduction to the fundamentals of white noise theory and offered insights into its mathematical foundations and practical applications. The book showed the relevance of white noise analysis in a series of stochastic cable equations. [23]
In probability theory, a branch of mathematics, white noise analysis, otherwise known as Hida calculus, is a framework for infinite-dimensional and stochastic calculus, based on the Gaussian white noise probability space, to be compared with Malliavin calculus based on the Wiener process. [1]
It is also known as differentiated white noise, due to its being the result of the differentiation of a white noise signal. Due to the diminished sensitivity of the human ear to high-frequency hiss and the ease with which white noise can be electronically differentiated (high-pass filtered at first order), many early adaptations of dither to ...
In applied mathematics, the Wiener process is used to represent the integral of a white noise Gaussian process, and so is useful as a model of noise in electronics engineering (see Brownian noise), instrument errors in filtering theory and disturbances in control theory. The Wiener process has applications throughout the mathematical sciences.
The central limit theorem of probability theory indicates that the summation of many random processes will tend to have distribution called Gaussian or Normal. AWGN is often used as a channel model in which the only impairment to communication is a linear addition of wideband or white noise with a constant spectral density (expressed as watts ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In signal processing theory, Gaussian noise, named after Carl Friedrich Gauss, is a kind of signal noise that has a probability density function (pdf) equal to that of the normal distribution (which is also known as the Gaussian distribution). [1] [2] In other words, the values that the noise can take are Gaussian-distributed.