enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lone pair - Wikipedia

    en.wikipedia.org/wiki/Lone_pair

    For example, in carbon dioxide (CO 2), which does not have a lone pair, the oxygen atoms are on opposite sides of the carbon atom (linear molecular geometry), whereas in water (H 2 O) which has two lone pairs, the angle between the hydrogen atoms is 104.5° (bent molecular geometry).

  3. Bent molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Bent_molecular_geometry

    AX 2 E 1 molecules, such as SnCl 2, have only one lone pair and the central angle about 120° (the centre and two vertices of an equilateral triangle). They have three sp 2 orbitals. There exist also sd-hybridised AX 2 compounds of transition metals without lone pairs: they have the central angle about 90° and are also classified as bent.

  4. Molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Molecular_geometry

    A water molecule has two pairs of bonded electrons and two unshared lone pairs. Tetrahedral: Tetra-signifies four, and -hedral relates to a face of a solid, so "tetrahedral" literally means "having four faces". This shape is found when there are four bonds all on one central atom, with no extra unshared electron pairs.

  5. Seesaw molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Seesaw_molecular_geometry

    This is true because the lone pair occupies more space near the central atom (A) than does a bonding pair of electrons. An equatorial lone pair is repelled by only two bonding pairs at 90°, whereas a hypothetical axial lone pair would be repelled by three bonding pairs at 90° which would make the molecule unstable. Repulsion by bonding pairs ...

  6. VSEPR theory - Wikipedia

    en.wikipedia.org/wiki/VSEPR_theory

    The difference between lone pairs and bonding pairs may also be used to rationalize deviations from idealized geometries. For example, the H 2 O molecule has four electron pairs in its valence shell: two lone pairs and two bond pairs. The four electron pairs are spread so as to point roughly towards the apices of a tetrahedron.

  7. T-shaped molecular geometry - Wikipedia

    en.wikipedia.org/wiki/T-shaped_molecular_geometry

    The T-shaped geometry is related to the trigonal bipyramidal molecular geometry for AX 5 molecules with three equatorial and two axial ligands. In an AX 3 E 2 molecule, the two lone pairs occupy two equatorial positions, and the three ligand atoms occupy the two axial positions as well as one equatorial position. The three atoms bond at 90 ...

  8. Molecular orbital diagram - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_diagram

    The 1b 1 MO is a lone pair, while the 3a 1, 1b 2 and 2a 1 MO's can be localized to give two O−H bonds and an in-plane lone pair. [30] This MO treatment of water does not have two equivalent rabbit ear lone pairs. [31] Hydrogen sulfide (H 2 S) too has a C 2v symmetry with 8 valence electrons but the bending angle is only 92°.

  9. Trigonal bipyramidal molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Trigonal_bipyramidal...

    3) is also based upon a trigonal bipyramid, but the actual molecular geometry is linear with terminal iodine atoms in the two axial positions only and the three equatorial positions occupied by lone pairs of electrons (AX 2 E 3); another example of this geometry is provided by xenon difluoride, XeF 2.