Search results
Results from the WOW.Com Content Network
Since a Poisson binomial distributed variable is a sum of n independent Bernoulli distributed variables, its mean and variance will simply be sums of the mean and variance of the n Bernoulli distributions: = =
Nowadays, it can be seen as a consequence of the central limit theorem since B(n, p) is a sum of n independent, identically distributed Bernoulli variables with parameter p. This fact is the basis of a hypothesis test, a "proportion z-test", for the value of p using x/n, the sample proportion and estimator of p, in a common test statistic. [35]
The categorical distribution is the generalization of the Bernoulli distribution for variables with any constant number of discrete values. The Beta distribution is the conjugate prior of the Bernoulli distribution. [5] The geometric distribution models the number of independent and identical Bernoulli trials needed to get one success.
The sum of n geometric random variables with probability of success p is a negative binomial random variable with parameters n and p. The sum of n exponential (β) random variables is a gamma (n, β) random variable. Since n is an integer, the gamma distribution is also a Erlang distribution. The sum of the squares of N standard normal random ...
A Bernoulli process is a finite or infinite sequence of independent random variables X 1, X 2, X 3, ..., such that for each i, the value of X i is either 0 or 1; for all values of , the probability p that X i = 1 is the same. In other words, a Bernoulli process is a sequence of independent identically distributed Bernoulli trials.
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.
In probability theory and statistics, the beta-binomial distribution is a family of discrete probability distributions on a finite support of non-negative integers arising when the probability of success in each of a fixed or known number of Bernoulli trials is either unknown or random.
Derivation of Bernoulli's triangle (blue bold text) from Pascal's triangle (pink italics) Bernoulli's triangle is an array of partial sums of the binomial coefficients. For any non-negative integer n and for any integer k included between 0 and n, the component in row n and column k is given by: = (),