Search results
Results from the WOW.Com Content Network
Pharmacokinetics (from Ancient Greek pharmakon "drug" and kinetikos "moving, putting in motion"; see chemical kinetics), sometimes abbreviated as PK, is a branch of pharmacology dedicated to describing how the body affects a specific substance after administration. [1]
First-pass metabolism may occur in the liver (for propranolol, lidocaine, clomethiazole, and nitroglycerin) or in the gut (for benzylpenicillin and insulin). [4] The four primary systems that affect the first pass effect of a drug are the enzymes of the gastrointestinal lumen, [5] gastrointestinal wall enzymes, [6] [7] [8] bacterial enzymes [5] and hepatic enzymes.
4.3 Pharmacokinetics. 5 Administration, drug policy and safety. ... Drug discovery starts with drug design, which is the inventive process of finding new drugs. [25]
Pharmacokinetics studies the manner and speed with which drugs and their metabolites are eliminated by the various excretory organs. This elimination will be proportional to the drug's plasmatic concentrations. In order to model these processes a working definition is required for some of the concepts related to excretion.
Processes in pharmacokinetics. ADME is the four-letter abbreviation (acronym) for absorption, distribution, metabolism, and excretion, and is mainly used in fields such as pharmacokinetics and pharmacology. The four letter stands for descriptors quantifying how a given drug interacts within body over time.
Pharmacokinetic factors determine peak concentrations, and concentrations cannot be maintained with absolute consistency because of metabolic breakdown and excretory clearance. Genetic factors may exist which would alter metabolism or drug action itself, and a patient's immediate status may also affect indicated dosage.
The action of drugs on the human body (or any other organism's body) is called pharmacodynamics, and the body's response to drugs is called pharmacokinetics. The drugs that enter an individual tend to stimulate certain receptors, ion channels, act on enzymes or transport proteins. As a result, they cause the human body to react in a specific way.
The use of trapezoidal rule in AUC calculation was known in literature by no later than 1975, in J.G. Wagner's Fundamentals of Clinical Pharmacokinetics. A 1977 article compares the "classical" trapezoidal method to a number of methods that take into account the typical shape of the concentration plot, caused by first-order kinetics. [8]