enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Method of moments (statistics) - Wikipedia

    en.wikipedia.org/wiki/Method_of_moments_(statistics)

    In statistics, the method of moments is a method of estimation of population parameters.The same principle is used to derive higher moments like skewness and kurtosis. It starts by expressing the population moments (i.e., the expected values of powers of the random variable under consideration) as functions of the parameters of interest.

  3. Chebyshev's inequality - Wikipedia

    en.wikipedia.org/wiki/Chebyshev's_inequality

    The rule is often called Chebyshev's theorem, about the range of standard deviations around the mean, in statistics. The inequality has great utility because it can be applied to any probability distribution in which the mean and variance are defined. For example, it can be used to prove the weak law of large numbers.

  4. 68–95–99.7 rule - Wikipedia

    en.wikipedia.org/wiki/68–95–99.7_rule

    A weaker three-sigma rule can be derived from Chebyshev's inequality, stating that even for non-normally distributed variables, at least 88.8% of cases should fall within properly calculated three-sigma intervals.

  5. Chebyshev's theorem - Wikipedia

    en.wikipedia.org/wiki/Chebyshev's_theorem

    Chebyshev's theorem is any of several theorems proven by Russian mathematician Pafnuty Chebyshev. Bertrand's postulate, that for every n there is a prime between n and 2n. Chebyshev's inequality, on the range of standard deviations around the mean, in statistics; Chebyshev's sum inequality, about sums and products of decreasing sequences

  6. Bertrand's postulate - Wikipedia

    en.wikipedia.org/wiki/Bertrand's_postulate

    His conjecture was completely proved by Chebyshev (1821–1894) in 1852 [3] and so the postulate is also called the Bertrand–Chebyshev theorem or Chebyshev's theorem. Chebyshev's theorem can also be stated as a relationship with π ( x ) {\displaystyle \pi (x)} , the prime-counting function (number of primes less than or equal to x ...

  7. Concentration inequality - Wikipedia

    en.wikipedia.org/wiki/Concentration_inequality

    Chebyshev's inequality requires the following information on a random variable : . The expected value ⁡ [] is finite.; The variance ⁡ [] = ⁡ [(⁡ [])] is finite.; Then, for every constant >,

  8. Proof of Bertrand's postulate - Wikipedia

    en.wikipedia.org/wiki/Proof_of_Bertrand's_postulate

    In mathematics, Bertrand's postulate (now a theorem) states that, for each , there is a prime such that < <.First conjectured in 1845 by Joseph Bertrand, [1] it was first proven by Chebyshev, and a shorter but also advanced proof was given by Ramanujan.

  9. Rearrangement inequality - Wikipedia

    en.wikipedia.org/wiki/Rearrangement_inequality

    Many important inequalities can be proved by the rearrangement inequality, such as the arithmetic mean – geometric mean inequality, the Cauchy–Schwarz inequality, and Chebyshev's sum inequality.