enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electron magnetic moment - Wikipedia

    en.wikipedia.org/wiki/Electron_magnetic_moment

    In atomic physics, the electron magnetic moment, or more specifically the electron magnetic dipole moment, is the magnetic moment of an electron resulting from its intrinsic properties of spin and electric charge. The value of the electron magnetic moment (symbol μ e) is −9.284 764 6917 (29) × 10 −24 J⋅T −1. [1]

  3. Spin (physics) - Wikipedia

    en.wikipedia.org/wiki/Spin_(physics)

    The measurement of neutrino magnetic moments is an active area of research. Experimental results have put the neutrino magnetic moment at less than 1.2 × 10 −10 times the electron's magnetic moment. On the other hand, elementary particles with spin but without electric charge, such as the photon and Z boson, do not have a magnetic moment.

  4. Magnetic moment - Wikipedia

    en.wikipedia.org/wiki/Magnetic_moment

    In electromagnetism, the magnetic moment or magnetic dipole moment is the combination of strength and orientation of a magnet or other object or system that exerts a magnetic field. The magnetic dipole moment of an object determines the magnitude of torque the object experiences in a given magnetic field. When the same magnetic field is applied ...

  5. Spin quantum number - Wikipedia

    en.wikipedia.org/wiki/Spin_quantum_number

    The unbalanced spin creates spin magnetic moment, making the electron act like a very small magnet. As the atoms pass through the in-homogeneous magnetic field, the force moment in the magnetic field influences the electron's dipole until its position matches the direction of the stronger field. The atom would then be pulled toward or away from ...

  6. Magnetochemistry - Wikipedia

    en.wikipedia.org/wiki/Magnetochemistry

    The magnitude of the paramagnetism is expressed as an effective magnetic moment, μ eff. For first-row transition metals the magnitude of μ eff is, to a first approximation, a simple function of the number of unpaired electrons, the spin-only formula. In general, spin–orbit coupling causes μ eff to deviate from the

  7. Nucleon magnetic moment - Wikipedia

    en.wikipedia.org/wiki/Nucleon_magnetic_moment

    A magnetic moment is a vector quantity, and the direction of the nucleon's magnetic moment is determined by its spin. [7]: 73 The torque on the neutron that results from an external magnetic field is towards aligning the neutron's spin vector opposite to the magnetic field vector. [8]: 385

  8. Bohr magneton - Wikipedia

    en.wikipedia.org/wiki/Bohr_magneton

    The spin angular momentum of an electron is ⁠ 1 / 2 ⁠ ħ, but the intrinsic electron magnetic moment caused by its spin is also approximately one Bohr magneton, which results in the electron spin g-factor, a factor relating spin angular momentum to corresponding magnetic moment of a particle, having a value of approximately 2. [15]

  9. Nuclear magnetic moment - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_moment

    The nuclear magnetic moment is the magnetic moment of an atomic nucleus and arises from the spin of the protons and neutrons. It is mainly a magnetic dipole moment; the quadrupole moment does cause some small shifts in the hyperfine structure as well. All nuclei that have nonzero spin also have a nonzero magnetic moment and vice versa, although ...