Search results
Results from the WOW.Com Content Network
Matrix multiplication shares some properties with usual multiplication. However, matrix multiplication is not defined if the number of columns of the first factor differs from the number of rows of the second factor, and it is non-commutative, [10] even when the product remains defined after changing the order of the factors. [11] [12]
The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:
Noting that any identity matrix is a rotation matrix, and that matrix multiplication is associative, we may summarize all these properties by saying that the n × n rotation matrices form a group, which for n > 2 is non-abelian, called a special orthogonal group, and denoted by SO(n), SO(n,R), SO n, or SO n (R), the group of n × n rotation ...
In theoretical computer science, the computational complexity of matrix multiplication dictates how quickly the operation of matrix multiplication can be performed. Matrix multiplication algorithms are a central subroutine in theoretical and numerical algorithms for numerical linear algebra and optimization, so finding the fastest algorithm for matrix multiplication is of major practical ...
It is called an identity matrix because multiplication with it leaves a matrix unchanged: = = for any m-by-n matrix A. A nonzero scalar multiple of an identity matrix is called a scalar matrix. If the matrix entries come from a field, the scalar matrices form a group, under matrix multiplication, that is isomorphic to the multiplicative group ...
Multiplication of two matrices is defined if and only if the number of columns of the left matrix is the same as the number of rows of the right matrix. That is, if A is an m × n matrix and B is an s × p matrix, then n needs to be equal to s for the matrix product AB to be defined.
The vectorization is frequently used together with the Kronecker product to express matrix multiplication as a linear transformation on matrices. In particular, vec ( A B C ) = ( C T ⊗ A ) vec ( B ) {\displaystyle \operatorname {vec} (ABC)=(C^{\mathrm {T} }\otimes A)\operatorname {vec} (B)} for matrices A , B , and C of dimensions k ...
That is, denoting each complex number by the real matrix of the linear transformation on the Argand diagram (viewed as the real vector space ), affected by complex -multiplication on . Thus, an m × n {\displaystyle m\times n} matrix of complex numbers could be well represented by a 2 m × 2 n {\displaystyle 2m\times 2n} matrix of real numbers.