Search results
Results from the WOW.Com Content Network
In sailing and boating, a vessel's freeboard is the distance from the waterline to the upper deck level, measured at the lowest point of sheer where water can enter the boat or ship. [1] In commercial vessels, the latter criterion measured relative to the ship's load line , regardless of deck arrangements, is the mandated and regulated meaning.
Once the friction factors of the pipes are obtained (or calculated from pipe friction laws such as the Darcy-Weisbach equation), we can consider how to calculate the flow rates and head losses on the network. Generally the head losses (potential differences) at each node are neglected, and a solution is sought for the steady-state flows on the ...
Pressure has dimensions of energy per unit volume, therefore the pressure drop between two points must be proportional to the dynamic pressure q. We also know that pressure must be proportional to the length of the pipe between the two points L as the pressure drop per unit length is a constant.
The Reynolds number Re is taken to be Re = V D / ν, where V is the mean velocity of fluid flow, D is the pipe diameter, and where ν is the kinematic viscosity μ / ρ, with μ the fluid's Dynamic viscosity, and ρ the fluid's density. The pipe's relative roughness ε / D, where ε is the pipe's effective roughness height and D the pipe ...
where is the density of the fluid, is the average velocity in the pipe, is the friction factor from the Moody chart, is the length of the pipe and is the pipe diameter. The chart plots Darcy–Weisbach friction factor f D {\displaystyle f_{D}} against Reynolds number Re for a variety of relative roughnesses, the ratio of the mean height of ...
Q mi = discharge capacity without freeboard (ft 3 /s) (In this case, freeboard is the vertical distance from the water surface to the dam crest when the water surface is at a lower elevation.) L = length of the spillway crest (ft) H = height of the sidewalls above the spillway crest (ft)
The Hazen–Williams equation is an empirical relationship which relates the flow of water in a pipe with the physical properties of the pipe and the pressure drop caused by friction. It is used in the design of water pipe systems [1] such as fire sprinkler systems, [2] water supply networks, and irrigation systems.
Consider the conservation of mass and momentum for a control volume bounded by cross section 1 just upstream of the expansion, cross section 2 downstream of where the flow re-attaches again to the pipe wall (after the flow separation at the expansion), and the pipe wall. There is the control volume's gain of momentum S 1 at the inflow and loss ...