Search results
Results from the WOW.Com Content Network
The definition of the non-relativistic gravitational fields provides the answer to this question, and thereby describes the image of the metric tensor in Newtonian physics. These fields are not strictly non-relativistic. Rather, they apply to the non-relativistic (or post-Newtonian) limit of GR.
The classic example of a non-relativistic spacetime is the spacetime of Galileo and Newton. It is the spacetime of everyday "common sense". [1] Galilean/Newtonian spacetime assumes that space is Euclidean (i.e. "flat"), and that time has a constant rate of passage that is independent of the state of motion of an observer, or indeed of anything external.
The first field theories, Newtonian gravitation and Maxwell's equations of electromagnetic fields were developed in classical physics before the advent of relativity theory in 1905, and had to be revised to be consistent with that theory. Consequently, classical field theories are usually categorized as non-relativistic and relativistic.
Similar is the situation in the case of charged-particle optics. Let us recall that in relativistic quantum mechanics too one has a similar problem of understanding the relativistic wave equations as the nonrelativistic approximation plus the relativistic correction terms in the quasi-relativistic regime.
A free particle with mass in non-relativistic quantum mechanics is described by the free Schrödinger equation: (,) = (,) where ψ is the wavefunction of the particle at position r and time t . The solution for a particle with momentum p or wave vector k , at angular frequency ω or energy E , is given by a complex plane wave :
Non-relativistic quantum electrodynamics (NRQED) is a low energy approximation of quantum electrodynamics which describes the interaction of (non-relativistic, i.e. moving at speeds much smaller than the speed of light) spin one-half particles (e.g., electrons) with the quantized electromagnetic field.
This state of affairs is in stark contrast to ordinary non-relativistic quantum mechanics, where there is always a unitary equivalence between the free and interacting representations. That fact is used in constructing the interaction picture , where operators are evolved using a free field representation, while states evolve using the ...
At non-relativistic speeds, the Sagnac effect is a simple consequence of the source independence of the speed of light. In other words, the Sagnac experiment does not distinguish between pre-relativistic physics and relativistic physics.