enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. 3-sphere - Wikipedia

    en.wikipedia.org/wiki/3-sphere

    The interior of a 3-sphere is a 4-ball, or a gongyl. It is called a 3-sphere because topologically, the surface itself is 3-dimensional, even though it is curved into the 4th dimension. For example, when traveling on a 3-sphere, you can go north and south, east and west, or along a 3rd set of cardinal directions.

  3. n-sphere - Wikipedia

    en.wikipedia.org/wiki/N-sphere

    The 3-sphere is the boundary of a ⁠ ⁠-ball in four-dimensional space. The ⁠ ⁠-sphere is the boundary of an ⁠ ⁠-ball. Given a Cartesian coordinate system, the unit ⁠ ⁠-sphere of radius ⁠ ⁠ can be defined as:

  4. Sphere - Wikipedia

    en.wikipedia.org/wiki/Sphere

    S ‍ 2: a 2-sphere is an ordinary sphere; S ‍ 3: a 3-sphere is a sphere in 4-dimensional Euclidean space. Spheres for n > 2 are sometimes called hyperspheres. The n-sphere of unit radius centered at the origin is denoted S ‍ n and is often referred to as "the" n-sphere. The ordinary sphere is a 2-sphere, because it is a 2-dimensional ...

  5. Poincaré conjecture - Wikipedia

    en.wikipedia.org/wiki/Poincaré_conjecture

    In the mathematical field of geometric topology, the Poincaré conjecture (UK: / ˈ p w æ̃ k ær eɪ /, [2] US: / ˌ p w æ̃ k ɑː ˈ r eɪ /, [3] [4] French: [pwɛ̃kaʁe]) is a theorem about the characterization of the 3-sphere, which is the hypersphere that bounds the unit ball in four-dimensional space.

  6. 3-manifold - Wikipedia

    en.wikipedia.org/wiki/3-manifold

    The 3-sphere is an especially important 3-manifold because of the now-proven Poincaré conjecture. Originally conjectured by Henri Poincaré, the theorem concerns a space that locally looks like ordinary three-dimensional space but is connected, finite in size, and lacks any boundary (a closed 3-manifold).

  7. Three-body problem - Wikipedia

    en.wikipedia.org/wiki/Three-body_problem

    While a system of 3 bodies interacting gravitationally is chaotic, a system of 3 bodies interacting elastically is not. [clarification needed] There is no general closed-form solution to the three-body problem. [1] In other words, it does not have a general solution that can be expressed in terms of a finite number of standard mathematical ...

  8. Knot (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Knot_(mathematics)

    The Alexander horned sphere is an example of a knotted 2-sphere in the 3-sphere which is not tame. [24] In the smooth category, the n-sphere is known not to knot in the n + 1-sphere provided n ≠ 3. The case n = 3 is a long-outstanding problem closely related to the question: does the 4-ball admit an exotic smooth structure?

  9. Point groups in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Point_groups_in_three...

    In geometry, a point group in three dimensions is an isometry group in three dimensions that leaves the origin fixed, or correspondingly, an isometry group of a sphere.It is a subgroup of the orthogonal group O(3), the group of all isometries that leave the origin fixed, or correspondingly, the group of orthogonal matrices.