Search results
Results from the WOW.Com Content Network
Direct projection of 3-sphere into 3D space and covered with surface grid, showing structure as stack of 3D spheres (2-spheres) In mathematics, a hypersphere, 3-sphere, or glome is a 4-dimensional analogue of a sphere, and is the 3-dimensional n-sphere. In 4-dimensional Euclidean space, it is the set of points equidistant from a fixed central ...
Draw three circumcircles (Miquel's circles) to triangles AB´C´, A´BC´, and A´B´C. Miquel's theorem states that these circles intersect in a single point M, called the Miquel point. In addition, the three angles MA´B, MB´C and MC´A (green in the diagram) are all equal, as are the three supplementary angles MA´C, MB´A and MC´B. [2] [3]
The three spheres can be sandwiched uniquely between two planes. Each pair of spheres defines a cone that is externally tangent to both spheres, and the apex of this cone corresponds to the intersection point of the two external tangents, i.e., the external homothetic center. Since one line of the cone lies in each plane, the apex of each cone ...
The number of circles is n 3-(n-1) 3 = 3n 2-3n+1 = 3n(n-1)+1. These overlapping circles can also be seen as a projection of an n-unit cube of spheres in 3-dimensional space, viewed on the diagonal axis. There are more spheres than circles because some are overlapping in 2 dimensions.
There are two possibilities: if =, the spheres coincide, and the intersection is the entire sphere; if , the spheres are disjoint and the intersection is empty. When a is nonzero, the intersection lies in a vertical plane with this x-coordinate, which may intersect both of the spheres, be tangent to both spheres, or external to both spheres.
In the extrinsic 3-dimensional picture, a great circle is the intersection of the sphere with any plane through the center. In the intrinsic approach, a great circle is a geodesic; a shortest path between any two of its points provided they are close enough. Or, in the (also intrinsic) axiomatic approach analogous to Euclid's axioms of plane ...
WASHINGTON (Reuters) -President-elect Donald Trump said on Saturday the U.S. should not be involved in the conflict in Syria, where rebel forces are threatening the government of President Bashar ...
The commonly-used diagram for the Borromean rings consists of three equal circles centered at the points of an equilateral triangle, close enough together that their interiors have a common intersection (such as in a Venn diagram or the three circles used to define the Reuleaux triangle).