Search results
Results from the WOW.Com Content Network
Figure 1: Two spheres tied with a string and rotating at an angular rate ω. Because of the rotation, the string tying the spheres together is under tension. Figure 2: Exploded view of rotating spheres in an inertial frame of reference showing the centripetal forces on the spheres provided by the tension in the tying string.
Rotational frequency, also known as rotational speed or rate of rotation (symbols ν, lowercase Greek nu, and also n), is the frequency of rotation of an object around an axis. Its SI unit is the reciprocal seconds (s −1 ); other common units of measurement include the hertz (Hz), cycles per second (cps), and revolutions per minute (rpm).
This is Rodrigues' formula for the axis of a composite rotation defined in terms of the axes of the two component rotations. He derived this formula in 1840 (see page 408). [3] The three rotation axes A, B, and C form a spherical triangle and the dihedral angles between the planes formed by the sides of this triangle are defined by the rotation ...
Beyond a simple "yes or no" answer to rotation, one may actually calculate one's rotation. To do that, one takes one's measured rate of rotation of the spheres and computes the tension appropriate to this observed rate. This calculated tension then is compared to the measured tension. If the two agree, one is in a stationary (non-rotating) frame.
If f(x, y, z) = 0 and g(x, y, z) = 0 are the equations of two distinct spheres then (,,) + (,,) = is also the equation of a sphere for arbitrary values of the parameters s and t. The set of all spheres satisfying this equation is called a pencil of spheres determined by the original two spheres. In this definition a sphere is allowed to be a ...
In classical mechanics, Euler's rotation equations are a vectorial quasilinear first-order ordinary differential equation describing the rotation of a rigid body, using a rotating reference frame with angular velocity ω whose axes are fixed to the body. They are named in honour of Leonhard Euler. Their general vector form is
The angular momentum equation can be used to relate the moment of the resultant force on a body about an axis (sometimes called torque), and the rate of rotation about that axis. Torque and angular momentum are related according to =, just as F = dp/dt in linear dynamics. In the absence of an external torque, the angular momentum of a body ...
For example, in 2-space n = 2, a rotation by angle θ has eigenvalues λ = e iθ and λ = e −iθ, so there is no axis of rotation except when θ = 0, the case of the null rotation. In 3-space n = 3 , the axis of a non-null proper rotation is always a unique line, and a rotation around this axis by angle θ has eigenvalues λ = 1, e iθ , e ...