Search results
Results from the WOW.Com Content Network
Thus the zero-trace part ε s of ε is the familiar viscous shear stress that is associated to progressive shearing deformation. It is the viscous stress that occurs in fluid moving through a tube with uniform cross-section (a Poiseuille flow) or between two parallel moving plates (a Couette flow), and resists those motions.
The formula to calculate average shear stress τ or force per unit area is: [1] =, where F is the force applied and A is the cross-sectional area.. The area involved corresponds to the material face parallel to the applied force vector, i.e., with surface normal vector perpendicular to the force.
The following equation illustrates the relation between shear rate and shear stress for a fluid with laminar flow only in the direction x: =, where: τ x y {\displaystyle \tau _{xy}} is the shear stress in the components x and y, i.e. the force component on the direction x per unit surface that is normal to the direction y (so it is parallel to ...
A two-dimensional flow that, at the highlighted point, has only a strain rate component, with no mean velocity or rotational component. In continuum mechanics, the strain-rate tensor or rate-of-strain tensor is a physical quantity that describes the rate of change of the strain (i.e., the relative deformation) of a material in the neighborhood of a certain point, at a certain moment of time.
For a Newtonian fluid wall, shear stress (τ w) can be related to shear rate by = ˙ where μ is the dynamic viscosity of the fluid. For non-Newtonian fluids, there are different constitutive laws depending on the fluid, which relates the stress tensor to the shear rate tensor.
In continuum mechanics, the Cauchy stress tensor ... or the continuum is a non-Newtonian fluid, ... The normal and shear components of the stress tensor on these ...
In continuum mechanics, a power-law fluid, or the Ostwald–de Waele relationship, is a type of generalized Newtonian fluid (time-independent non-Newtonian fluid) for which the shear stress, τ, is given by = where: K is the flow consistency index (SI units Pa·s n),
where the eponymous μ(I) is a dimensionless function of I.As with Newtonian fluids, the first term -Pδ ij represents the effect of pressure. The second term represents a shear stress: it acts in the direction of the shear, and its magnitude is equal to the pressure multiplied by a coefficient of friction μ(I).