Search results
Results from the WOW.Com Content Network
The Hofmann rearrangement (Hofmann degradation) is the organic reaction of a primary amide to a primary amine with one less carbon atom. [1] [2] ... yielding an anion.
The Hofmann–Löffler reaction (also referred to as Hofmann–Löffler–Freytag reaction, Löffler–Freytag reaction, Löffler–Hofmann reaction, as well as Löffler's method) is an organic reaction in which a cyclic amine 2 (pyrrolidine or, in some cases, piperidine) is generated by thermal or photochemical decomposition of N-halogenated amine 1 in the presence of a strong acid ...
The displaced halide anion then usually reacts via another S N 2 reaction on one of the R 1 carbons, displacing the oxygen atom to give the desired phosphonate (4) and another alkyl halide (5). This has been supported by the observation that chiral R 1 groups experience inversion of configuration at the carbon center attacked by the halide anion.
E1cB is a two-step process, the first step of which may or may not be reversible. First, a base abstracts the relatively acidic proton to generate a stabilized anion. The lone pair of electrons on the anion then moves to the neighboring atom, thus expelling the leaving group and forming a double or triple bond. [1]
Thermolysis converts 1 to (E,E) geometric isomer 2, but 3 to (E,Z) isomer 4.. The Woodward–Hoffmann rules (or the pericyclic selection rules) [1] are a set of rules devised by Robert Burns Woodward and Roald Hoffmann to rationalize or predict certain aspects of the stereochemistry and activation energy of pericyclic reactions, an important class of reactions in organic chemistry.
The Hofmann–Martius rearrangement in organic chemistry is a rearrangement reaction converting an N-alkylated aniline to the corresponding ortho and / or para aryl-alkylated aniline. The reaction requires heat, and the catalyst is an acid like hydrochloric acid .
This organic reaction is closely related to the Hofmann elimination, but the base is a part of the leaving group. Sulfoxides can undergo an essentially identical reaction to produce sulfenic acids, which is important in the antioxidant chemistry of garlic and other alliums. Selenoxides likewise undergo selenoxide eliminations.
It is accompanied by carbocationic rearrangement reactions; Scheme 2. E1 reaction mechanism. An example in scheme 2 is the reaction of tert-butylbromide with potassium ethoxide in ethanol. E1 eliminations happen with highly substituted alkyl halides for two main reasons.