Search results
Results from the WOW.Com Content Network
The Turing test, originally called the imitation game by Alan Turing in 1949, [2] is a test of a machine's ability to exhibit intelligent behaviour equivalent to, or indistinguishable from, that of a human. Turing proposed that a human evaluator would judge natural language conversations between a human and a machine designed to generate human ...
With regard to what actions the machine actually does, Turing (1936) [2] states the following: "This [example] table (and all succeeding tables of the same kind) is to be understood to mean that for a configuration described in the first two columns the operations in the third column are carried out successively, and the machine then goes over into the m-configuration in the final column."
An oracle machine or o-machine is a Turing a-machine that pauses its computation at state "o" while, to complete its calculation, it "awaits the decision" of "the oracle"—an entity unspecified by Turing "apart from saying that it cannot be a machine" (Turing (1939), The Undecidable, p. 166–168).
For the first time ever, a computer has successfully convinced people into thinking it's an actual human in the iconic "Turing Test." Computer science pioneer Alan Turing created the test in 1950 ...
Description numbers are numbers that arise in the theory of Turing machines. They are very similar to Gödel numbers, and are also occasionally called "Gödel numbers" in the literature. Given some universal Turing machine, every Turing machine can, given its encoding on that machine, be assigned a number. This is the machine's description number.
In computer science, a universal Turing machine (UTM) is a Turing machine capable of computing any computable sequence, [1] as described by Alan Turing in his seminal paper "On Computable Numbers, with an Application to the Entscheidungsproblem". Common sense might say that a universal machine is impossible, but Turing proves that it is possible.
Turing machines with input-and-output also have the same time complexity as other Turing machines; in the words of Papadimitriou 1994 Prop 2.2: For any k -string Turing machine M operating within time bound f ( n ) {\displaystyle f(n)} there is a ( k + 2 ) {\displaystyle (k+2)} -string Turing machine M' with input and output ...
For premium support please call: 800-290-4726 more ways to reach us