enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    TI SR-50A, a 1975 calculator with a factorial key (third row, center right) The factorial function is a common feature in scientific calculators . [ 73 ] It is also included in scientific programming libraries such as the Python mathematical functions module [ 74 ] and the Boost C++ library . [ 75 ]

  3. TI-59 / TI-58 - Wikipedia

    en.wikipedia.org/wiki/TI-59_/_TI-58

    Here is a sample program that computes the factorial of an integer number from 2 to 69. For 5!, if "5 A" is pressed, it gives the result, 120. Unlike the SR-52 , the TI-58 and TI-59 do not have the factorial function built-in, but do support it through the software module which was delivered with the calculator.

  4. TI-89 series - Wikipedia

    en.wikipedia.org/wiki/TI-89_series

    The most significant difference between HW1 and HW2 is in the way the calculator handles the display. In HW1 calculators there is a video buffer that stores all of the information that should be displayed on the screen, and every time the screen is refreshed the calculator accesses this buffer and flushes it to the display (direct memory access).

  5. HP 35s - Wikipedia

    en.wikipedia.org/wiki/HP_35s

    Here is a sample program that computes the factorial of an integer number from 2 to 69 (ignoring the calculator's built-in factorial/gamma function). There are two versions of the example: one for algebraic mode and one for RPN mode. The RPN version is significantly shorter. Algebraic version:

  6. Windows Calculator - Wikipedia

    en.wikipedia.org/wiki/Windows_Calculator

    A simple arithmetic calculator was first included with Windows 1.0. [5]In Windows 3.0, a scientific mode was added, which included exponents and roots, logarithms, factorial-based functions, trigonometry (supports radian, degree and gradians angles), base conversions (2, 8, 10, 16), logic operations, statistical functions such as single variable statistics and linear regression.

  7. Factorial number system - Wikipedia

    en.wikipedia.org/wiki/Factorial_number_system

    The factorial number system is sometimes defined with the 0! place omitted because it is always zero (sequence A007623 in the OEIS). In this article, a factorial number representation will be flagged by a subscript "!". In addition, some examples will have digits delimited by a colon. For example, 3:4:1:0:1:0! stands for

  8. Factorion - Wikipedia

    en.wikipedia.org/wiki/Factorion

    For =, the sum of the factorials of the digits is simply the number of digits in the base 2 representation since ! =! =. A natural number n {\displaystyle n} is a sociable factorion if it is a periodic point for SFD b {\displaystyle \operatorname {SFD} _{b}} , where SFD b k ⁡ ( n ) = n {\displaystyle \operatorname {SFD} _{b}^{k}(n)=n} for a ...

  9. Legendre's formula - Wikipedia

    en.wikipedia.org/wiki/Legendre's_formula

    Since ! is the product of the integers 1 through n, we obtain at least one factor of p in ! for each multiple of p in {,, …,}, of which there are ⌊ ⌋.Each multiple of contributes an additional factor of p, each multiple of contributes yet another factor of p, etc. Adding up the number of these factors gives the infinite sum for (!