Search results
Results from the WOW.Com Content Network
The transitions are named sequentially by Greek letters: from n = 2 to n = 1 is called Lyman-alpha, 3 to 1 is Lyman-beta, 4 to 1 is Lyman-gamma, and so on. The series is named after its discoverer, Theodore Lyman. The greater the difference in the principal quantum numbers, the higher the energy of the electromagnetic emission.
The Lyman Series. The Lyman limit is at the wavelength of 91.2 nm (912 Å), corresponding to a frequency of 3.29 million GHz and a photon energy of 13.6 eV. [3] LyC energies are mostly in the ultraviolet C portion of the electromagnetic spectrum (see Lyman series).
The Lyman limit is the short-wavelength end of the hydrogen Lyman series, at 91.13 nm (911.3 Å)(13.6 eV). It corresponds to the energy required for an electron in the hydrogen ground state to escape from the electric potential barrier that originally confined it, thus creating a hydrogen ion. [1] This energy is equivalent to the Rydberg constant.
Lyman-alpha, typically denoted by Ly-α, is a spectral line of hydrogen (or, more generally, of any one-electron atom) in the Lyman series. It is emitted when the atomic electron transitions from an n = 2 orbital to the ground state ( n = 1), where n is the principal quantum number .
The spectral lines are grouped into series according to n′. Lines are named sequentially starting from the longest wavelength/lowest frequency of the series, using Greek letters within each series. For example, the 2 → 1 line is called "Lyman-alpha" (Ly-α), while the 7 → 3 line is called "Paschen-delta" (Pa-δ).
In reference to the figure shown, Lyman-Werner photons are emitted as described below: A hydrogen molecule can absorb a far-ultraviolet photon (11.2 eV < energy of the photon < 13.6 eV) and make a transition from the ground electronic state X to excited state B (Lyman) or C (Werner). Radiative decay occurs rapidly.
Light consists of photons whose energy E is proportional to the frequency ν and wavenumber of the light: E = hν = hc/λ (where h is the Planck constant, c is the speed of light, and λ is the wavelength. A combination of frequencies or wavenumbers is then equivalent to a combination of energies.
A Lyman-alpha emitter (LAE) is a type of distant galaxy that emits Lyman-alpha radiation from neutral hydrogen. Most known LAEs are extremely distant, and because of the finite travel time of light they provide glimpses into the history of the universe.