Search results
Results from the WOW.Com Content Network
This technique is used when the boiling point of the desired compound is difficult to achieve or will cause the compound to decompose. [1] Reduced pressures decrease the boiling point of compounds. The reduction in boiling point can be calculated using a temperature-pressure nomograph using the Clausius–Clapeyron relation. [2]
Triple point: 150 K (−123 °C), 0.00043 Pa Critical point: 514 K (241 °C), 63 bar Std enthalpy change of fusion, Δ fus H o +4.9 kJ/mol Std entropy change of fusion, Δ fus S o +31 J/(mol·K) Std enthalpy change of vaporization, Δ vap H o +42.3 ± 0.4 kJ/mol [4] Std entropy change of vaporization, Δ vap S o: 109.67 J/(mol·K) Molal ...
On the left-hand vertical axis, locate and mark the point containing the pressure 100 psia. On the right-hand vertical axis, locate and mark the point containing the temperature 60°F. Connect the points with a straight line. Note where the line crosses the methane axis. Read this K-value off the chart (approximately 21.3).
Boiling point (°C) K b (°C⋅kg/mol) Freezing point (°C) K f (°C⋅kg/mol) Data source; Aniline: 184.3 3.69 –5.96 –5.87 K b & K f [1] Lauric acid: 298.9 44 –3.9
Water boiling at 99.3 °C (210.8 °F) at 215 m (705 ft) elevation. The boiling point of a substance is the temperature at which the vapor pressure of a liquid equals the pressure surrounding the liquid [1] [2] and the liquid changes into a vapor.
This page contains tables of azeotrope data for various binary and ternary mixtures of solvents. The data include the composition of a mixture by weight (in binary azeotropes, when only one fraction is given, it is the fraction of the second component), the boiling point (b.p.) of a component, the boiling point of a mixture, and the specific gravity of the mixture.
This is a list of the various reported boiling points for the elements, with recommended values to be used elsewhere on Wikipedia. For broader coverage of this topic, see Boiling point . Boiling points, Master List format
The boiling point of water is typically considered to be 100 °C (212 °F; 373 K), especially at sea level. Pressure and a change in the composition of the liquid may alter the boiling point of the liquid. High elevation cooking generally takes longer since boiling point is a function of atmospheric pressure.