enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vector fields in cylindrical and spherical coordinates

    en.wikipedia.org/wiki/Vector_fields_in...

    Note: This page uses common physics notation for spherical coordinates, in which is the angle between the z axis and the radius vector connecting the origin to the point in question, while is the angle between the projection of the radius vector onto the x-y plane and the x axis. Several other definitions are in use, and so care must be taken ...

  3. Vector notation - Wikipedia

    en.wikipedia.org/wiki/Vector_notation

    A cylindrical coordinate system with origin O, polar axis A, and longitudinal axis L. The dot is the point with radial distance ρ = 4, angular coordinate φ = 130°, and height z = 4. A cylindrical vector is an extension of the concept of polar coordinates into three dimensions. It is akin to an arrow in the cylindrical coordinate system.

  4. Del in cylindrical and spherical coordinates - Wikipedia

    en.wikipedia.org/wiki/Del_in_cylindrical_and...

    This article uses the standard notation ISO 80000-2, which supersedes ISO 31-11, for spherical coordinates (other sources may reverse the definitions of θ and φ): . The polar angle is denoted by [,]: it is the angle between the z-axis and the radial vector connecting the origin to the point in question.

  5. Cylindrical coordinate system - Wikipedia

    en.wikipedia.org/wiki/Cylindrical_coordinate_system

    The notation for cylindrical coordinates is not uniform. The ISO standard 31-11 recommends ( ρ , φ , z ) , where ρ is the radial coordinate, φ the azimuth, and z the height. However, the radius is also often denoted r or s , the azimuth by θ or t , and the third coordinate by h or (if the cylindrical axis is considered horizontal) x , or ...

  6. Tensors in curvilinear coordinates - Wikipedia

    en.wikipedia.org/wiki/Tensors_in_curvilinear...

    Elementary vector and tensor algebra in curvilinear coordinates is used in some of the older scientific literature in mechanics and physics and can be indispensable to understanding work from the early and mid 1900s, for example the text by Green and Zerna. [1]

  7. Christoffel symbols - Wikipedia

    en.wikipedia.org/wiki/Christoffel_symbols

    This definition allows a common abuse of notation. ... Commonly used notation for vector fields on ... In cylindrical coordinates, Cartesian and cylindrical polar ...

  8. Covariance and contravariance of vectors - Wikipedia

    en.wikipedia.org/wiki/Covariance_and_contra...

    A vector's components change scale inversely to changes in scale to the reference axes, and consequently a vector is called a contravariant tensor. A vector, which is an example of a contravariant tensor, has components that transform inversely to the transformation of the reference axes, (with example transformations including rotation and ...

  9. Divergence - Wikipedia

    en.wikipedia.org/wiki/Divergence

    In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the quantity of the vector field's source at each point. More technically, the divergence represents the volume density of the outward flux of a vector field from an infinitesimal volume around a given point.