enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vector fields in cylindrical and spherical coordinates

    en.wikipedia.org/wiki/Vector_fields_in...

    Vectors are defined in cylindrical coordinates by (ρ, φ, z), where ρ is the length of the vector projected onto the xy-plane, φ is the angle between the projection of the vector onto the xy-plane (i.e. ρ) and the positive x-axis (0 ≤ φ < 2π), z is the regular z-coordinate. (ρ, φ, z) is given in Cartesian coordinates by:

  3. Vector notation - Wikipedia

    en.wikipedia.org/wiki/Vector_notation

    A cylindrical coordinate system with origin O, polar axis A, and longitudinal axis L. The dot is the point with radial distance ρ = 4, angular coordinate φ = 130°, and height z = 4. A cylindrical vector is an extension of the concept of polar coordinates into three dimensions. It is akin to an arrow in the cylindrical coordinate system.

  4. Cylindrical coordinate system - Wikipedia

    en.wikipedia.org/wiki/Cylindrical_coordinate_system

    The notation for cylindrical coordinates is not uniform. The ISO standard 31-11 recommends ( ρ , φ , z ) , where ρ is the radial coordinate, φ the azimuth, and z the height. However, the radius is also often denoted r or s , the azimuth by θ or t , and the third coordinate by h or (if the cylindrical axis is considered horizontal) x , or ...

  5. Del in cylindrical and spherical coordinates - Wikipedia

    en.wikipedia.org/wiki/Del_in_cylindrical_and...

    This article uses the standard notation ISO 80000-2, which supersedes ISO 31-11, for spherical coordinates (other sources may reverse the definitions of θ and φ): . The polar angle is denoted by [,]: it is the angle between the z-axis and the radial vector connecting the origin to the point in question.

  6. Covariance and contravariance of vectors - Wikipedia

    en.wikipedia.org/wiki/Covariance_and_contra...

    A vector's components change scale inversely to changes in scale to the reference axes, and consequently a vector is called a contravariant tensor. A vector, which is an example of a contravariant tensor, has components that transform inversely to the transformation of the reference axes, (with example transformations including rotation and ...

  7. Vector field - Wikipedia

    en.wikipedia.org/wiki/Vector_field

    In vector calculus and physics, a vector field is an assignment of a vector to each point in a space, most commonly Euclidean space. [1] A vector field on a plane can be visualized as a collection of arrows with given magnitudes and directions, each attached to a point on the plane.

  8. Tensors in curvilinear coordinates - Wikipedia

    en.wikipedia.org/wiki/Tensors_in_curvilinear...

    Elementary vector and tensor algebra in curvilinear coordinates is used in some of the older scientific literature in mechanics and physics and can be indispensable to understanding work from the early and mid 1900s, for example the text by Green and Zerna. [1]

  9. Curvilinear coordinates - Wikipedia

    en.wikipedia.org/wiki/Curvilinear_coordinates

    A vector v (red) represented by • a vector basis (yellow, left: e 1, e 2, e 3), tangent vectors to coordinate curves (black) and • a covector basis or cobasis (blue, right: e 1, e 2, e 3), normal vectors to coordinate surfaces (grey) in general (not necessarily orthogonal) curvilinear coordinates (q 1, q 2, q 3). The basis and cobasis do ...