Search results
Results from the WOW.Com Content Network
The Higgs boson, sometimes called the Higgs particle, [9] [10] is an elementary particle in the Standard Model of particle physics produced by the quantum excitation of the Higgs field, [11] [12] one of the fields in particle physics theory. [12]
Quantum gravity (QG) is a field of theoretical physics that seeks to describe gravity according to the principles of quantum mechanics.It deals with environments in which neither gravitational nor quantum effects can be ignored, [1] such as in the vicinity of black holes or similar compact astrophysical objects, as well as in the early stages of the universe moments after the Big Bang.
In theories of quantum gravity, the graviton is the hypothetical elementary particle that mediates the force of gravitational interaction. There is no complete quantum field theory of gravitons due to an outstanding mathematical problem with renormalization in general relativity.
The name boson was coined by Paul Dirac [3] [4] to commemorate the contribution of Satyendra Nath Bose, an Indian physicist. When Bose was a reader (later professor) at the University of Dhaka, Bengal (now in Bangladesh), [5] [6] he and Albert Einstein developed the theory characterising such particles, now known as Bose–Einstein statistics and Bose–Einstein condensate.
This test has been applied experimentally to distinguish between a boson sampling and a uniform distribution in the 3-photon regime with integrated circuits of 5, 7, 9 [28] and 13 modes. [27] The test above does not distinguish between more complex distributions, such as quantum and classical, or between fermionic and bosonic statistics.
In the Kaluza theory, the gravitational constant can be understood as an electromagnetic coupling constant in the metric. There is also a stress–energy tensor for the scalar field. The scalar field behaves like a variable gravitational constant, in terms of modulating the coupling of electromagnetic stress–energy to spacetime curvature.
Superfluid vacuum theory (SVT), sometimes known as the BEC vacuum theory, is an approach in theoretical physics and quantum mechanics where the fundamental physical vacuum (non-removable background) is considered as a superfluid or as a Bose–Einstein condensate (BEC).
More technically, the question is why the Higgs boson is so much lighter than the Planck mass (or the grand unification energy, or a heavy neutrino mass scale): one would expect that the large quantum contributions to the square of the Higgs boson mass would inevitably make the mass huge, comparable to the scale at which new physics appears ...