Ads
related to: joule thomson expansion tanksupplyhouse.com has been visited by 100K+ users in the past month
Search results
Results from the WOW.Com Content Network
In thermodynamics, the Joule–Thomson effect (also known as the Joule–Kelvin effect or Kelvin–Joule effect) describes the temperature change of a real gas or liquid (as differentiated from an ideal gas) when it is expanding; typically caused by the pressure loss from flow through a valve or porous plug while keeping it insulated so that no heat is exchanged with the environment.
The Joule expansion (a subset of free expansion) is an irreversible process in thermodynamics in which a volume of gas is kept in one side of a thermally isolated container (via a small partition), with the other side of the container being evacuated. The partition between the two parts of the container is then opened, and the gas fills the ...
So for >, an expansion at constant enthalpy increases temperature as the work done by the repulsive interactions of the gas is dominant, and so the change in kinetic energy is positive. But for T < T inv {\displaystyle T<T_{\text{inv}}} , expansion causes temperature to decrease because the work of attractive intermolecular forces dominates ...
Free expansion = Work done by an expanding gas ... Joule-Thomson coefficient
In the case of free expansion for an ideal gas, there are no molecular interactions, and the temperature remains constant. For real gasses, the molecules do interact via attraction or repulsion depending on temperature and pressure, and heating or cooling does occur. This is known as the Joule–Thomson effect.
The Joule effect (during Joule expansion), the temperature change of a gas (usually cooling) when it is allowed to expand freely. The Joule–Thomson effect , the temperature change of a gas when it is forced through a valve or porous plug while keeping it insulated so that no heat is exchanged with the environment.
In 1895, William Hampson in England [3] and Carl von Linde in Germany [4] independently developed and patented the Hampson–Linde cycle to liquefy air using the Joule–Thomson expansion process and regenerative cooling. [5] On 10 May 1898, James Dewar used regenerative cooling to become the first to statically liquefy hydrogen.
The expansion valve partially vaporizes the refrigerant cooling it via evaporative cooling and the resulting vapor is cooled via expansive cooling. (This is a combination of Joule-Thomson cooling and work done by the expanding gas, both at the expense of the internal energy of the gas) The cold, low pressure liquid refrigerant will now absorb ...
Ads
related to: joule thomson expansion tanksupplyhouse.com has been visited by 100K+ users in the past month