Search results
Results from the WOW.Com Content Network
The problem of finding the longest substring with at least occurrences can be solved by first preprocessing the tree to count the number of leaf descendants for each internal node, and then finding the deepest node with at least leaf descendants. To avoid overlapping repeats, you can check that the list of suffix lengths has no consecutive ...
The Boyer–Moore algorithm searches for occurrences of P in T by performing explicit character comparisons at different alignments. Instead of a brute-force search of all alignments (of which there are n − m + 1 {\displaystyle n-m+1} ), Boyer–Moore uses information gained by preprocessing P to skip as many alignments as possible.
The simplicity of the counting sort algorithm and its use of the easily parallelizable prefix sum primitive also make it usable in more fine-grained parallel algorithms. [7] As described, counting sort is not an in-place algorithm; even disregarding the count array, it needs separate input and output arrays. It is possible to modify the ...
A simple and inefficient way to see where one string occurs inside another is to check at each index, one by one. First, we see if there is a copy of the needle starting at the first character of the haystack; if not, we look to see if there's a copy of the needle starting at the second character of the haystack, and so forth.
Both the random access model and bit complexity analyses only count the working storage of the algorithm, and not the storage for the input sequence itself. Similarly, on a random access machine the algorithm takes time O(n) (linear time) on an input sequence of n items, because it performs only a constant number of operations per input item.
A counting Bloom filter is a probabilistic data structure that is used to test whether the number of occurrences of a given element in a sequence exceeds a given threshold. As a generalized form of the Bloom filter, false positive matches are possible, but false negatives are not – in other words, a query returns either "possibly bigger or equal than the threshold" or "definitely smaller ...
The HyperLogLog has three main operations: add to add a new element to the set, count to obtain the cardinality of the set and merge to obtain the union of two sets. Some derived operations can be computed using the inclusion–exclusion principle like the cardinality of the intersection or the cardinality of the difference between two HyperLogLogs combining the merge and count operations.
One way to use the level-wise paradigm is to first discover all the frequent items in a level-wise fashion. It simply means counting the occurrences of all singleton elements in the database. Then, the transactions are filtered by removing the non-frequent items. At the end of this step, each transaction consists of only the frequent elements ...