Search results
Results from the WOW.Com Content Network
A neuron's ability to generate and propagate an action potential changes during development. How much the membrane potential of a neuron changes as the result of a current impulse is a function of the membrane input resistance. As a cell grows, more channels are added to the membrane, causing a decrease in input resistance. A mature neuron also ...
The stimulus is automatically decreased in steps of a set percentage until the response falls below the target (generation of an action potential). Thereafter, the stimulus is stepped up or down depending on whether the previous response was lesser or greater than the target response until a resting (or control) threshold has been established.
Basic cardiac action potential. Unlike the action potential in skeletal muscle cells, the cardiac action potential is not initiated by nervous activity.Instead, it arises from a group of specialized cells known as pacemaker cells, that have automatic action potential generation capability.
A receptor potential can also cause the release of neurotransmitters from one cell that will act on another cell, generating an action potential in the second cell. [4] The magnitude of the receptor potential determines the frequency with which action potentials are generated and is controlled by adaptation, stimulus strength, and temporal ...
Summation of excitatory postsynaptic potentials increases the probability that the potential will reach the threshold potential and generate an action potential, whereas summation of inhibitory postsynaptic potentials can prevent the cell from achieving an action potential. The closer the dendritic input is to the axon hillock, the more the ...
This single EPSP does not sufficiently depolarize the membrane to generate an action potential. The summation of these three EPSPs generates an action potential. In neuroscience, an excitatory postsynaptic potential (EPSP) is a postsynaptic potential that makes the postsynaptic neuron more likely to fire an action potential.
Once this initial action potential is initiated, principally at the axon hillock, it propagates down the length of the axon. Under normal conditions, the action potential would attenuate very quickly due to the porous nature of the cell membrane. To ensure faster and more efficient propagation of action potentials, the axon is myelinated ...
Graded potentials that make the membrane potential less negative or more positive, thus making the postsynaptic cell more likely to have an action potential, are called excitatory postsynaptic potentials (EPSPs). [4] Depolarizing local potentials sum together, and if the voltage reaches the threshold potential, an action potential occurs in ...