Search results
Results from the WOW.Com Content Network
Osmium is a hard, brittle, blue-gray metal, and the densest stable element—about twice as dense as lead. The density of osmium is slightly greater than that of iridium ; the two are so similar (22.587 versus 22.562 g/cm 3 at 20 °C) that each was at one time considered to be the densest element.
US market Coke Zero bottles, showing 2 L (70.4 imp fl oz; 67.6 US fl oz) with US Customary conversion. The two-liter bottle is a common container for soft drinks, beer, and wine. These bottles are produced from polyethylene terephthalate, also known as PET plastic, or glass using the blow molding process. Bottle labels consist of a printed ...
Soda–lime glass (for containers) [2] Borosilicate (low expansion, similar to Pyrex, Duran) Glass wool (for thermal insulation) Special optical glass (similar to Lead crystal) Fused silica Germania glass Germanium selenide glass Chemical composition, wt% 74 SiO 2, 13 Na 2 O, 10.5 CaO, 1.3 Al 2 O 3, 0.3 K 2 O, 0.2 SO 3, 0.2 MgO, 0.01 TiO 2, 0. ...
The failure of a material is usually classified into brittle failure or ductile failure . Depending on the conditions (such as temperature, state of stress, loading rate) most materials can fail in a brittle or ductile manner or both. However, for most practical situations, a material may be classified as either brittle or ductile.
Glass bottles and glass jars are found in many households worldwide. The first glass bottles were produced in Mesopotamia around 1500 B.C., and in the Roman Empire in around 1 AD. [1] America's glass bottle and glass jar industry was born in the early 1600s, when settlers in Jamestown built the first glass-melting furnace.
From those studies, bulk glass alloys were made of La, Mg, and Zr, and these alloys demonstrated plasticity even with ribbon thickness from 20 μm to 50 μm. The plasticity was a stark difference to past amorphous metals that became brittle at those thicknesses. [8] [9] [10] [11]
These mechanisms can overlap in the brittle-ductile settings. Deformation mechanisms are commonly characterized as brittle , ductile , and brittle-ductile. The driving mechanism responsible is an interplay between internal (e.g. composition, grain size and lattice-preferred orientation) and external (e.g. temperature and fluid pressure) factors.
The ductile failure model of Lynch [17] and Popovich [18] predicted that adsorption of the liquid metal leads to the weakening of atomic bonds and nucleation of dislocations, which move under stress, pile up and work harden the solid. Also, dissolution helps in the nucleation of voids which grow under stress and cause ductile failure.