Search results
Results from the WOW.Com Content Network
Note: the Strickler coefficient is the reciprocal of Manning coefficient: Ks =1/ n, having dimension of L 1/3 /T and units of m 1/3 /s; it varies from 20 m 1/3 /s (rough stone and rough surface) to 80 m 1/3 /s (smooth concrete and cast iron). The discharge formula, Q = A V, can be used to rewrite Gauckler–Manning's equation by substitution for V.
The variations of Q/Q (full) and V/V (full) with H/D ratio is shown in figure(b).From the equation 5, maximum value of Q/Q (full) is found to be equal to 1.08 at H/D =0.94 which implies that maximum rate of discharge through a conduit is observed for a conduit partly full.
is the roughness of the inner surface of the pipe (dimension of length) D is inner pipe diameter; The Swamee–Jain equation is used to solve directly for the Darcy–Weisbach friction factor f for a full-flowing circular pipe. It is an approximation of the implicit Colebrook–White equation. [10]
The hydraulic diameter, D H, is a commonly used term when handling flow in non-circular tubes and channels. Using this term, one can calculate many things in the same way as for a round tube. When the cross-section is uniform along the tube or channel length, it is defined as [1] [2] =, where
where is the density of the fluid, is the average velocity in the pipe, is the friction factor from the Moody chart, is the length of the pipe and is the pipe diameter. The chart plots Darcy–Weisbach friction factor f D {\displaystyle f_{D}} against Reynolds number Re for a variety of relative roughnesses, the ratio of the mean height of ...
[1] [2] [4] Strickler’s equation introduces a new emperical coefficient which must be determined experimentally to define n-value. However, unlike n-value, which has units of T/L 1/3, has units of length, and at least in theory, is a measurable quantity.
The Hardy Cross method assumes that the flow going in and out of the system is known and that the pipe length, diameter, roughness and other key characteristics are also known or can be assumed. [1] The method also assumes that the relation between flow rate and head loss is known, but the method does not require any particular relation to be used.
In the case of a non-circular cross-section of a pipe, the same formula can be used to find the entry length with a little modification. A new parameter “hydraulic diameter” relates the flow in non-circular pipe to that of circular pipe flow. This is valid as long as the cross-sectional area shape is not too exaggerated.