Search results
Results from the WOW.Com Content Network
A regular polyhedron is identified by its Schläfli symbol of the form {n, m}, where n is the number of sides of each face and m the number of faces meeting at each vertex. There are 5 finite convex regular polyhedra (the Platonic solids), and four regular star polyhedra (the Kepler–Poinsot polyhedra), making nine regular polyhedra in all. In ...
In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all edges congruent), and the same number of faces meet at each vertex. There are only five such polyhedra:
The polyhedra are grouped in 5 tables: Regular (1–5), Semiregular (6–18), regular star polyhedra (20–22,41), Stellations and compounds (19–66), and uniform star polyhedra (67–119). The four regular star polyhedra are listed twice because they belong to both the uniform polyhedra and stellation groupings.
When three such symmetries belong to a polyhedron, it is known as regular polyhedron. [39] There are nine regular polyhedra: five Platonic solids (cube, octahedron, icosahedron, tetrahedron, and dodecahedron—all of which have regular polygonal faces) and four Kepler–Poinsot polyhedrons. Nevertheless, some polyhedrons may not possess one or ...
Regular polyhedron. Platonic solid: Tetrahedron, Cube, Octahedron, Dodecahedron, Icosahedron; Regular spherical polyhedron. Dihedron, Hosohedron; Kepler–Poinsot polyhedron (Regular star polyhedra) Small stellated dodecahedron, Great stellated dodecahedron, Great icosahedron, Great dodecahedron; Abstract regular polyhedra (Projective polyhedron)
2 Names of polyhedra by number of sides. 3 Table of polyhedra. ... 1–18: 5 convex regular and 13 convex semiregular; 20–22, 41: 4 non-convex regular;
It can be constructed by a rhombic triacontahedron with rhombic-based pyramids added to all the faces, as shown by the five colored model image. (This construction does not generate the regular compound of five octahedra, but shares the same topology and can be smoothly deformed into the regular compound.) It has a density of greater than 1.
This list includes the five regular compounds above. The 75 uniform compounds are listed in the Table below. Most are shown singularly colored by each polyhedron element. Some chiral pairs of face groups are colored by symmetry of the faces within each polyhedron. 1-19: Miscellaneous (4,5,6,9,17 are the 5 regular compounds)