enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Plane mirror - Wikipedia

    en.wikipedia.org/wiki/Plane_mirror

    Plane mirror. A plane mirror showing the virtual image of an urn nearby. A diagram of an object in two plane mirrors that formed an angle bigger than 90 degrees, causing the object to have three reflections. A plane mirror is a mirror with a flat (planar) reflective surface. [1][2] For light rays striking a plane mirror, the angle of reflection ...

  3. Foucault's measurements of the speed of light - Wikipedia

    en.wikipedia.org/wiki/Foucault's_measurements_of...

    If the rotating mirror R were exactly at the principal focus, the moving image of the slit would remain upon the distant plane mirror M (equal in diameter to lens L) as long as the axis of the pencil of light remained on the lens, this being true regardless of the RM distance. Michelson was thus able to increase the RM distance to nearly 2000 feet.

  4. Fourier optics - Wikipedia

    en.wikipedia.org/wiki/Fourier_optics

    Fourier optics begins with the homogeneous, scalar wave equation (valid in source-free regions): (,) = where is the speed of light and u(r,t) is a real-valued Cartesian component of an electromagnetic wave propagating through a free space (e.g., u(r, t) = E i (r, t) for i = x, y, or z where E i is the i-axis component of an electric field E in the Cartesian coordinate system).

  5. Scheimpflug principle - Wikipedia

    en.wikipedia.org/wiki/Scheimpflug_principle

    The Scheimpflug principle is a description of the geometric relationship between the orientation of the plane of focus, the lens plane, and the image plane of an optical system (such as a camera) when the lens plane is not parallel to the image plane. It is applicable to the use of some camera movements on a view camera.

  6. High-resolution transmission electron microscopy - Wikipedia

    en.wikipedia.org/wiki/High-resolution...

    To calculate back to φ e (x,u) the wave in the image plane is back propagated numerically to the sample. If all properties of the microscope are well known, it is possible to recover the real exit wave with very high accuracy. First however, both phase and amplitude of the electron wave in the image plane must be measured.

  7. Petzval field curvature - Wikipedia

    en.wikipedia.org/wiki/Petzval_field_curvature

    Field curvature: the image "plane" (the arc) deviates from a flat surface (the vertical line). Petzval field curvature, named for Joseph Petzval, [1] describes the optical aberration in which a flat object normal to the optical axis (or a non-flat object past the hyperfocal distance) cannot be brought properly into focus on a flat image plane.

  8. Method of image charges - Wikipedia

    en.wikipedia.org/wiki/Method_of_image_charges

    The method of image charges (also known as the method of images and method of mirror charges) is a basic problem-solving tool in electrostatics.The name originates from the replacement of certain elements in the original layout with fictitious charges, which replicates the boundary conditions of the problem (see Dirichlet boundary conditions or Neumann boundary conditions).

  9. Cardinal point (optics) - Wikipedia

    en.wikipedia.org/wiki/Cardinal_point_(optics)

    Optical systems can be folded using plane mirrors; the system is still considered to be rotationally symmetric if it possesses rotational symmetry when unfolded. Any point on the optical axis (in any space) is an axial point. Rotational symmetry greatly simplifies the analysis of optical systems, which otherwise must be analyzed in three ...