enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Newey–West estimator - Wikipedia

    en.wikipedia.org/wiki/Newey–West_estimator

    In Stata, the command newey produces Newey–West standard errors for coefficients estimated by OLS regression. [13] In MATLAB, the command hac in the Econometrics toolbox produces the Newey–West estimator (among others). [14] In Python, the statsmodels [15] module includes functions for the covariance matrix using Newey–West.

  3. Heteroskedasticity-consistent standard errors - Wikipedia

    en.wikipedia.org/wiki/Heteroskedasticity...

    While the OLS point estimator remains unbiased, it is not "best" in the sense of having minimum mean square error, and the OLS variance estimator ^ [^] does not provide a consistent estimate of the variance of the OLS estimates. For any non-linear model (for instance logit and probit models), however, heteroskedasticity has more severe ...

  4. Seemingly unrelated regressions - Wikipedia

    en.wikipedia.org/wiki/Seemingly_unrelated...

    The model can be estimated equation-by-equation using standard ordinary least squares (OLS). Such estimates are consistent, however generally not as efficient as the SUR method, which amounts to feasible generalized least squares with a specific form of the variance-covariance matrix. Two important cases when SUR is in fact equivalent to OLS ...

  5. Robust regression - Wikipedia

    en.wikipedia.org/wiki/Robust_regression

    The data can be found at the classic data sets page, and there is some discussion in the article on the Box–Cox transformation. A plot of the logs of ALT versus the logs of γGT appears below. The two regression lines are those estimated by ordinary least squares (OLS) and by robust MM-estimation.

  6. Ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Ordinary_least_squares

    In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model (with fixed level-one [clarification needed] effects of a linear function of a set of explanatory variables) by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable (values ...

  7. Heckman correction - Wikipedia

    en.wikipedia.org/wiki/Heckman_correction

    The Heckman correction is a two-step M-estimator where the covariance matrix generated by OLS estimation of the second stage is inconsistent. [7] Correct standard errors and other statistics can be generated from an asymptotic approximation or by resampling, such as through a bootstrap .

  8. Variance inflation factor - Wikipedia

    en.wikipedia.org/wiki/Variance_inflation_factor

    The VIF provides an index that measures how much the variance (the square of the estimate's standard deviation) of an estimated regression coefficient is increased because of collinearity. Cuthbert Daniel claims to have invented the concept behind the variance inflation factor, but did not come up with the name.

  9. Clustered standard errors - Wikipedia

    en.wikipedia.org/wiki/Clustered_standard_errors

    Consider a simple model with N observations that are subdivided in C clusters. Let Y {\displaystyle Y} be an n × 1 {\displaystyle n\times 1} vector of outcomes, X {\displaystyle X} a n × m {\displaystyle n\times m} matrix of covariates, β {\displaystyle \beta } an m × 1 {\displaystyle m\times 1} vector of unknown parameters, and e ...