Search results
Results from the WOW.Com Content Network
The centers of four squares all constructed either internally or externally on the sides of a parallelogram are the vertices of a square. [8] If two lines parallel to sides of a parallelogram are constructed concurrent to a diagonal, then the parallelograms formed on opposite sides of that diagonal are equal in area. [8] The diagonals of a ...
Any two equilateral triangles are similar. Two triangles, both similar to a third triangle, are similar to each other (transitivity of similarity of triangles). Corresponding altitudes of similar triangles have the same ratio as the corresponding sides. Two right triangles are similar if the hypotenuse and one other side have lengths in the ...
For squares on two sides of an arbitrary triangle it yields a parallelogram of equal area over the third side and if the two sides are the legs of a right angle the parallelogram over the third side will be square as well. For a right-angled triangle, two parallelograms attached to the legs of the right angle yield a rectangle of equal area on ...
These two triangles are shown to be congruent, proving this square has the same area as the left rectangle. This argument is followed by a similar version for the right rectangle and the remaining square. Putting the two rectangles together to reform the square on the hypotenuse, its area is the same as the sum of the area of the other two squares.
The statement is often used as a justification in elementary geometry proofs when a conclusion of the congruence of parts of two triangles is needed after the congruence of the triangles has been established. For example, if two triangles have been shown to be congruent by the SSS criteria and a statement that corresponding angles are congruent ...
The triangles that make up configurations are known as component triangles. [1] Triangles must not only be a part of a configuration set to be in a similarity system, but must also be directly similar. [1] Direct similarity implies that all angles are equal between two given triangle and that they share the same rotational sense. [2]
The first property implies that every rhombus is a parallelogram. A rhombus therefore has all of the properties of a parallelogram: for example, opposite sides are parallel; adjacent angles are supplementary; the two diagonals bisect one another; any line through the midpoint bisects the area; and the sum of the squares of the sides equals the ...
Given any parallelogram, construct on its sides four squares external to the parallelogram. The quadrilateral formed by joining the centers of those four squares is a square. [1] It is a special case of van Aubel's theorem and a square version of the Napoleon's theorem.