Search results
Results from the WOW.Com Content Network
Jensen's inequality generalizes the statement that a secant line of a convex function lies above its graph. Visualizing convexity and Jensen's inequality. In mathematics, Jensen's inequality, named after the Danish mathematician Johan Jensen, relates the value of a convex function of an integral to the integral of the convex function.
A convex function of a martingale is a submartingale, by Jensen's inequality. For example, the square of the gambler's fortune in the fair coin game is a submartingale (which also follows from the fact that X n 2 − n is a martingale). Similarly, a concave function of a martingale is a supermartingale.
Indeed, convex functions are exactly those that satisfies the hypothesis of Jensen's inequality. A first-order homogeneous function of two positive variables x {\displaystyle x} and y , {\displaystyle y,} (that is, a function satisfying f ( a x , a y ) = a f ( x , y ) {\displaystyle f(ax,ay)=af(x,y)} for all positive real a , x , y > 0 ...
Jensen's inequality provides a simple lower bound on the moment-generating function: (), where is the mean of X. The moment-generating function can be used in conjunction with Markov's inequality to bound the upper tail of a real random variable X.
There are three inequalities between means to prove. There are various methods to prove the inequalities, including mathematical induction, the Cauchy–Schwarz inequality, Lagrange multipliers, and Jensen's inequality. For several proofs that GM ≤ AM, see Inequality of arithmetic and geometric means.
Toggle Jensen's operator and trace inequalities subsection. 12.1 Jensen's trace inequality. ... See proof and discussion in, [1] for example. Löwner–Heinz theorem
In an encore “20/20” airing Dec. 27 at 9 p.m. ET, the show, which originally aired in 2023, tells the story of Julie Jensen, the mother of two who was found dead in her bed in 1998.
Hölder's inequality; Jackson's inequality; Jensen's inequality; Khabibullin's conjecture on integral inequalities; Kantorovich inequality; Karamata's inequality; Korn's inequality; Ladyzhenskaya's inequality; Landau–Kolmogorov inequality; Lebedev–Milin inequality; Lieb–Thirring inequality; Littlewood's 4/3 inequality; Markov brothers ...