Search results
Results from the WOW.Com Content Network
For the case n = 2, an extension of the Euclidean algorithm can find any integer relation that exists between any two real numbers x 1 and x 2.The algorithm generates successive terms of the continued fraction expansion of x 1 /x 2; if there is an integer relation between the numbers, then their ratio is rational and the algorithm eventually terminates.
Given an integer n, choose some integer a coprime to n and calculate a n − 1 modulo n. If the result is different from 1, then n is composite. If it is 1, then n may be prime. If a n −1 (modulo n) is 1 but n is not prime, then n is called a pseudoprime to base a. In practice, if a n −1 (modulo n) is 1, then n is usually prime.
92 ÷ 4 = 23 (Check to see if the number is divisible by 4) 2092 ÷ 4 = 523 (If the number that is obtained is divisible by 4, then the original number is divisible by 4) Second method. 6174 (the original number) check that last digit is even, otherwise 6174 can't be divisible by 4. 61 7 4 (Separate the last 2 digits from the rest of the number)
To factorize a small integer n using mental or pen-and-paper arithmetic, the simplest method is trial division: checking if the number is divisible by prime numbers 2, 3, 5, and so on, up to the square root of n. For larger numbers, especially when using a computer, various more sophisticated factorization algorithms are more efficient.
If-then-else flow diagram A nested if–then–else flow diagram. In computer science, conditionals (that is, conditional statements, conditional expressions and conditional constructs) are programming language constructs that perform different computations or actions or return different values depending on the value of a Boolean expression, called a condition.
Python supports normal floating point numbers, which are created when a dot is used in a literal (e.g. 1.1), when an integer and a floating point number are used in an expression, or as a result of some mathematical operations ("true division" via the / operator, or exponentiation with a negative exponent).
The final character of a ten-digit International Standard Book Number is a check digit computed so that multiplying each digit by its position in the number (counting from the right) and taking the sum of these products modulo 11 is 0. The digit the farthest to the right (which is multiplied by 1) is the check digit, chosen to make the sum correct.
A number of conditions are equivalent to a and b being coprime: No prime number divides both a and b. There exist integers x, y such that ax + by = 1 (see Bézout's identity). The integer b has a multiplicative inverse modulo a, meaning that there exists an integer y such that by ≡ 1 (mod a).