Search results
Results from the WOW.Com Content Network
It is associated with the binding and unbinding reaction of receptor (R) and ligand (L) molecules, which is formalized as: R + L ⇌ RL. The reaction is characterized by the on-rate constant k on and the off-rate constant k off, which have units of M −1 s −1 and s −1, respectively. In equilibrium, the forward binding transition R + L → ...
The Scatchard equation is an equation used in molecular biology to calculate the affinity and number of binding sites ... (k off) related to the dissociation constant ...
The dissociation rate constant is defined using K off. [2] The Michaelis-Menten constant is denoted by K m and is represented by the equation K m = (K off + K cat)/ K on [definition needed]. The rates that the enzyme binds and dissociates from the substrate are represented by K on and K off respectively.
In chemistry, biochemistry, and pharmacology, a dissociation constant (K D) is a specific type of equilibrium constant that measures the propensity of a larger object to separate (dissociate) reversibly into smaller components, as when a complex falls apart into its component molecules, or when a salt splits up into its component ions.
Faster or stronger binding is represented by a higher affinity, or equivalently a lower dissociation constant. The EC 50 should not be confused with the affinity constant, K d . While the former reflects the drug concentration needed for a level of tissue response, the latter reflects the drug concentration needed for an amount of receptor binding.
Receptor–ligand binding kinetics also involves the on- and off-rates of binding. A main goal of receptor–ligand kinetics is to determine the concentrations of the various kinetic species (i.e., the states of the receptor and ligand) at all times, from a given set of initial concentrations and a given set of rate constants.
Ligand efficiency is a measurement of the binding energy per atom of a ligand to its binding partner, such as a receptor or enzyme. [1]Ligand efficiency is used in drug discovery research programs to assist in narrowing focus to lead compounds with optimal combinations of physicochemical properties and pharmacological properties.
However, to quantify cooperativity in a host–guest system, the binding energy needs to be considered. The schematic on the right shows the binding of A, binding of B, positive cooperative binding of A–B, and lastly, negative cooperative binding of A–B. Therefore, an alternate form of the Gibbs free energy equation would be