Search results
Results from the WOW.Com Content Network
The idea behind Chauvenet's criterion finds a probability band that reasonably contains all n samples of a data set, centred on the mean of a normal distribution.By doing this, any data point from the n samples that lies outside this probability band can be considered an outlier, removed from the data set, and a new mean and standard deviation based on the remaining values and new sample size ...
The modified Thompson Tau test is used to find one outlier at a time (largest value of δ is removed if it is an outlier). Meaning, if a data point is found to be an outlier, it is removed from the data set and the test is applied again with a new average and rejection region. This process is continued until no outliers remain in a data set.
Grubbs's test can also be defined as a one-sided test, replacing α/(2N) with α/N. To test whether the minimum value is an outlier, the test statistic is = ¯ with Y min denoting the minimum value. To test whether the maximum value is an outlier, the test statistic is
Cochran's test, [1] named after William G. Cochran, is a one-sided upper limit variance outlier statistical test .The C test is used to decide if a single estimate of a variance (or a standard deviation) is significantly larger than a group of variances (or standard deviations) with which the single estimate is supposed to be comparable.
However, at 95% confidence, Q = 0.455 < 0.466 = Q table 0.167 is not considered an outlier. McBane [1] notes: Dixon provided related tests intended to search for more than one outlier, but they are much less frequently used than the r 10 or Q version that is intended to eliminate a single outlier.
Random sample consensus (RANSAC) is an iterative method to estimate parameters of a mathematical model from a set of observed data that contains outliers, when outliers are to be accorded no influence [clarify] on the values of the estimates. Therefore, it also can be interpreted as an outlier detection method. [1]
An outlier may be defined as a data point that differs markedly from other observations. [ 6 ] [ 7 ] A high-leverage point are observations made at extreme values of independent variables. [ 8 ] Both types of atypical observations will force the regression line to be close to the point. [ 2 ]
The formula then divides by () to account for the fact that we remove the observation rather than adjusting its value, reflecting the fact that removal changes the distribution of covariates more when applied to high-leverage observations (i.e. with outlier covariate values). Similar formulas arise when applying general formulas for statistical ...