enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Riemannian manifold - Wikipedia

    en.wikipedia.org/wiki/Riemannian_manifold

    A Riemannian manifold is a smooth manifold together with a Riemannian metric. The techniques of differential and integral calculus are used to pull geometric data out of the Riemannian metric. For example, integration leads to the Riemannian distance function, whereas differentiation is used to define curvature and parallel transport.

  3. Complex manifold - Wikipedia

    en.wikipedia.org/wiki/Complex_manifold

    The Hopf manifolds are examples of complex manifolds that are not Kähler. To construct one, take a complex vector space minus the origin and consider the action of the group of integers on this space by multiplication by exp(n). The quotient is a complex manifold whose first Betti number is one, so by the Hodge theory, it cannot be Kähler.

  4. History of manifolds and varieties - Wikipedia

    en.wikipedia.org/wiki/History_of_manifolds_and...

    Riemannian manifolds and Riemann surfaces are named after Bernhard Riemann. In 1857, Riemann introduced the concept of Riemann surfaces as part of a study of the process of analytic continuation; Riemann surfaces are now recognized as one-dimensional complex manifolds. He also furthered the study of abelian and other multi-variable complex ...

  5. Kähler–Einstein metric - Wikipedia

    en.wikipedia.org/wiki/Kähler–Einstein_metric

    The scalar curvature is the total trace of the Riemannian curvature tensor, a smooth function on the manifold (,), and in the Kähler case the condition that the scalar curvature is constant admits a transformation into an equation similar to the complex Monge–Ampere equation of the Kähler–Einstein setting.

  6. Riemann surface - Wikipedia

    en.wikipedia.org/wiki/Riemann_surface

    There are several equivalent definitions of a Riemann surface. A Riemann surface X is a connected complex manifold of complex dimension one. This means that X is a connected Hausdorff space that is endowed with an atlas of charts to the open unit disk of the complex plane: for every point x ∈ X there is a neighbourhood of x that is homeomorphic to the open unit disk of the complex plane, and ...

  7. Kähler manifold - Wikipedia

    en.wikipedia.org/wiki/Kähler_manifold

    A Kähler manifold is a Riemannian manifold of even dimension whose holonomy group is contained in the unitary group ⁡ (). [3] Equivalently, there is a complex structure on the tangent space of at each point (that is, a real linear map from to itself with =) such that preserves the metric (meaning that (,) = (,)) and is preserved by parallel transport.

  8. Hermitian manifold - Wikipedia

    en.wikipedia.org/wiki/Hermitian_manifold

    Given an arbitrary Riemannian metric g on an almost complex manifold M one can construct a new metric g′ compatible with the almost complex structure J in an obvious manner: ′ (,) = ((,) + (,)). Choosing a Hermitian metric on an almost complex manifold M is equivalent to a choice of U( n )-structure on M ; that is, a reduction of the ...

  9. Conformal geometry - Wikipedia

    en.wikipedia.org/wiki/Conformal_geometry

    A conformal manifold is a Riemannian manifold (or pseudo-Riemannian manifold) equipped with an equivalence class of metric tensors, in which two metrics g and h are equivalent if and only if =, where λ is a real-valued smooth function defined on the manifold and is called the conformal factor.