Search results
Results from the WOW.Com Content Network
The lattice of subgroups of the infinite cyclic group can be described in the same way, as the dual of the divisibility lattice of all positive integers. If the infinite cyclic group is represented as the additive group on the integers, then the subgroup generated by d is a subgroup of the subgroup generated by e if and only if e is a divisor ...
A metacyclic group is a group containing a cyclic normal subgroup whose quotient is also cyclic. [23] These groups include the cyclic groups, the dicyclic groups, and the direct products of two cyclic groups. The polycyclic groups generalize metacyclic groups by allowing more than one level of group extension. A group is polycyclic if it has a ...
A proper subgroup of a group G is a subgroup H which is a proper subset of G (that is, H ≠ G). This is often represented notationally by H < G, read as "H is a proper subgroup of G". Some authors also exclude the trivial group from being proper (that is, H ≠ {e} ). [2] [3] If H is a subgroup of G, then G is sometimes called an overgroup of H.
Since a linear order induces a cyclic order, cyclically ordered groups are also a generalization of linearly ordered groups: the rational numbers Q, the real numbers R, and so on. Some of the most important cyclically ordered groups fall into neither previous category: the circle group T and its subgroups, such as the subgroup of rational points.
A subgroup H of a group G is ascendant if there is an ascending subgroup series starting from H and ending at G, such that every term in the series is a normal subgroup of its successor. The series may be infinite. If the series is finite, then the subgroup is subnormal. automorphism An automorphism of a group is an isomorphism of the group to ...
Bounded generation is unaffected by passing to a subgroup of finite index: if H is a finite index subgroup of G then G is boundedly generated if and only if H is boundedly generated. Bounded generation goes to extension: if a group G has a normal subgroup N such that both N and G/N are boundedly generated, then so is G itself.
Another characterization is that a finite p-group in which there is a unique subgroup of order p is either cyclic or a 2-group isomorphic to generalized quaternion group. [13] In particular, for a finite field F with odd characteristic, the 2-Sylow subgroup of SL 2 ( F ) is non-abelian and has only one subgroup of order 2, so this 2-Sylow ...
In abstract algebra, a basic subgroup is a subgroup of an abelian group which is a direct sum of cyclic subgroups and satisfies further technical conditions. This notion was introduced by L. Ya. Kulikov (for p-groups) and by László Fuchs (in general) in an attempt to formulate classification theory of infinite abelian groups that goes beyond the Prüfer theorems.