enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Subgroups of cyclic groups - Wikipedia

    en.wikipedia.org/wiki/Subgroups_of_cyclic_groups

    The lattice of subgroups of the infinite cyclic group can be described in the same way, as the dual of the divisibility lattice of all positive integers. If the infinite cyclic group is represented as the additive group on the integers, then the subgroup generated by d is a subgroup of the subgroup generated by e if and only if e is a divisor ...

  3. Cyclic group - Wikipedia

    en.wikipedia.org/wiki/Cyclic_group

    A metacyclic group is a group containing a cyclic normal subgroup whose quotient is also cyclic. [23] These groups include the cyclic groups, the dicyclic groups, and the direct products of two cyclic groups. The polycyclic groups generalize metacyclic groups by allowing more than one level of group extension. A group is polycyclic if it has a ...

  4. Subgroup - Wikipedia

    en.wikipedia.org/wiki/Subgroup

    A proper subgroup of a group G is a subgroup H which is a proper subset of G (that is, H ≠ G). This is often represented notationally by H < G, read as "H is a proper subgroup of G". Some authors also exclude the trivial group from being proper (that is, H ≠ {e} ). [2] [3] If H is a subgroup of G, then G is sometimes called an overgroup of H.

  5. Presentation of a group - Wikipedia

    en.wikipedia.org/wiki/Presentation_of_a_group

    Formally, the group G is said to have the above presentation if it is isomorphic to the quotient of a free group on S by the normal subgroup generated by the relations R. As a simple example, the cyclic group of order n has the presentation = , where 1 is the group identity.

  6. Classification of finite simple groups - Wikipedia

    en.wikipedia.org/wiki/Classification_of_finite...

    In mathematics, the classification of finite simple groups (popularly called the enormous theorem [1] [2]) is a result of group theory stating that every finite simple group is either cyclic, or alternating, or belongs to a broad infinite class called the groups of Lie type, or else it is one of twenty-six exceptions, called sporadic (the Tits group is sometimes regarded as a sporadic group ...

  7. Group action - Wikipedia

    en.wikipedia.org/wiki/Group_action

    In every group G with subgroup H, left multiplication is an action of G on the set of cosets G / H: g⋅aH = gaH for all g, a in G. In particular if H contains no nontrivial normal subgroups of G this induces an isomorphism from G to a subgroup of the permutation group of degree [G : H]. In every group G, conjugation is an action of G on G: g ...

  8. Quotient group - Wikipedia

    en.wikipedia.org/wiki/Quotient_group

    Consider its subgroup made of the fourth roots of unity, shown as red balls. This normal subgroup splits the group into three cosets, shown in red, green and blue. One can check that the cosets form a group of three elements (the product of a red element with a blue element is blue, the inverse of a blue element is green, etc.).

  9. Boundedly generated group - Wikipedia

    en.wikipedia.org/wiki/Boundedly_generated_group

    Bounded generation is unaffected by passing to a subgroup of finite index: if H is a finite index subgroup of G then G is boundedly generated if and only if H is boundedly generated. Bounded generation goes to extension: if a group G has a normal subgroup N such that both N and G/N are boundedly generated, then so is G itself.