Search results
Results from the WOW.Com Content Network
Blumberg theorem – even if a real function : is nowhere continuous, there is a dense subset of such that the restriction of to is continuous. Thomae's function (also known as the popcorn function) – a function that is continuous at all irrational numbers and discontinuous at all rational numbers.
In mathematics, the Weierstrass function, named after its discoverer, Karl Weierstrass, is an example of a real-valued function that is continuous everywhere but differentiable nowhere. It is also an example of a fractal curve .
the sinc-function becomes a continuous function on all real numbers. The term removable singularity is used in such cases when (re)defining values of a function to coincide with the appropriate limits make a function continuous at specific points. A more involved construction of continuous functions is the function composition.
The Dirichlet function can be constructed as the double pointwise limit of a sequence of continuous functions, as follows: , = (( (!))) for integer j and k. This shows that the Dirichlet function is a Baire class 2 function.
The sum and difference of two absolutely continuous functions are also absolutely continuous. If the two functions are defined on a bounded closed interval, then their product is also absolutely continuous. [4] If an absolutely continuous function is defined on a bounded closed interval and is nowhere zero then its reciprocal is absolutely ...
The absolute value function is continuous (i.e. it has no gaps). It is differentiable everywhere except at the point x = 0, where it makes a sharp turn as it crosses the y-axis. A cusp on the graph of a continuous function. At zero, the function is continuous but not differentiable. If f is differentiable at a point x 0, then f must also be ...
A classic example of a pathology is the Weierstrass function, a function that is continuous everywhere but differentiable nowhere. [1] The sum of a differentiable function and the Weierstrass function is again continuous but nowhere differentiable; so there are at least as many such functions as differentiable functions.
The graph of the Cantor function on the unit interval. In mathematics, the Cantor function is an example of a function that is continuous, but not absolutely continuous. It is a notorious counterexample in analysis, because it challenges naive intuitions about continuity, derivative, and measure. Though it is continuous everywhere and has zero ...