Search results
Results from the WOW.Com Content Network
Image of CD4 co-receptor binding to MHC (Major Histocompatibility Complex) non-polymorphic region. In molecular biology, CD4 (cluster of differentiation 4) is a glycoprotein that serves as a co-receptor for the T-cell receptor (TCR). CD4 is found on the surface of immune cells such as helper T cells, monocytes, macrophages, and dendritic cells.
The T helper cells (T h cells), also known as CD4 + cells or CD4-positive cells, are a type of T cell that play an important role in the adaptive immune system. They aid the activity of other immune cells by releasing cytokines .
CD4-Ig works by mimicking the binding of CD4 to HIV, thereby preventing the virus from infecting T-helper cells. HIV infects T-helper cells by binding to the CD4 receptor and the co-receptor CCR5 or CXCR4. CD4-Ig binds to the viral envelope glycoprotein gp120, which is responsible for HIV binding to CD4. By binding to gp120, CD4-Ig prevents the ...
The CD family of co-receptors are a well-studied group of extracellular receptors found in immunological cells. [4] The CD receptor family typically act as co-receptors, illustrated by the classic example of CD4 acting as a co-receptor to the T cell receptor (TCR) to bind major histocompatibility complex II (MHC-II). [5]
Antigen presentation stimulates immature T cells to become either mature "cytotoxic" CD8+ cells or mature "helper" CD4+ cells. An antigen-presenting cell (APC) or accessory cell is a cell that displays an antigen bound by major histocompatibility complex (MHC) proteins on its surface; this process is known as antigen presentation.
CD4 cells develop into a diverse array of effector cell types depending on the nature of the signals they receive during priming. CD4 effector activity can include cytotoxicity , but more frequently it involves the secretion of a set of cytokines that directs the target cell to make a particular response.
The surface of CAR T cells can bear either of two types of co-receptors, CD4 and CD8. These two cell types, called CD4+ and CD8+, respectively, have different and interacting cytotoxic effects. Therapies employing a 1-to-1 ratio of the cell types apparently provide synergistic antitumor effects. [6]
Cellular membranes separate these two cellular environments - intracellular and extracellular. Each T cell can only recognize tens to hundreds of copies of a unique sequence of a single peptide among thousands of other peptides presented on the same cell, because an MHC molecule in one cell can bind to quite a large range of peptides.