Search results
Results from the WOW.Com Content Network
In mathematics, an irreducible polynomial is, roughly speaking, a polynomial that cannot be factored into the product of two non-constant polynomials.The property of irreducibility depends on the nature of the coefficients that are accepted for the possible factors, that is, the ring to which the coefficients of the polynomial and its possible factors are supposed to belong.
GF(2) (also denoted , Z/2Z or /) is the finite field with two elements. [1] [a]GF(2) is the field with the smallest possible number of elements, and is unique if the additive identity and the multiplicative identity are denoted respectively 0 and 1, as usual.
The number of irreducible monic polynomials of degree n over F q is the number of aperiodic necklaces, given by Moreau's necklace-counting function M q (n). The closely related necklace function N q (n) counts monic polynomials of degree n which are primary (a power of an irreducible); or alternatively irreducible polynomials of all degrees d ...
Formally, a unique factorization domain is defined to be an integral domain R in which every non-zero element x of R which is not a unit can be written as a finite product of irreducible elements p i of R: x = p 1 p 2 ⋅⋅⋅ p n with n ≥ 1. and this representation is unique in the following sense: If q 1, ..., q m are irreducible elements ...
Over GF(2), x + 1 is a primitive polynomial and all other primitive polynomials have an odd number of terms, since any polynomial mod 2 with an even number of terms is divisible by x + 1 (it has 1 as a root). An irreducible polynomial F(x) of degree m over GF(p), where p is prime, is a primitive polynomial if the smallest positive integer n ...
In abstract algebra, irreducible can be an abbreviation for irreducible element of an integral domain; for example an irreducible polynomial. In representation theory, an irreducible representation is a nontrivial representation with no nontrivial proper subrepresentations. Similarly, an irreducible module is another name for a simple module.
In mathematics and computer algebra, factorization of polynomials or polynomial factorization expresses a polynomial with coefficients in a given field or in the integers as the product of irreducible factors with coefficients in the same domain. Polynomial factorization is one of the fundamental components of computer algebra systems.
In number theory, Hilbert's irreducibility theorem, conceived by David Hilbert in 1892, states that every finite set of irreducible polynomials in a finite number of variables and having rational number coefficients admit a common specialization of a proper subset of the variables to rational numbers such that all the polynomials remain irreducible.