Search results
Results from the WOW.Com Content Network
In the context of translation, a termination signal is the stop codon on the mRNA that elicits the release of the growing peptide from the ribosome. [2] Termination signals play an important role in regulating gene expression since they mark the end of a gene transcript and determine which DNA sequences are expressed in the cell. [1]
Stop codon (red dot) of the human mitochondrial DNA MT-ATP8 gene, and start codon (blue circle) of the MT-ATP6 gene. For each nucleotide triplet (square brackets), the corresponding amino acid is given (one-letter code), either in the +1 reading frame for MT-ATP8 (in red) or in the +3 frame for MT-ATP6 (in blue).
In genetics, a transcription terminator is a section of nucleic acid sequence that marks the end of a gene or operon in genomic DNA during transcription.This sequence mediates transcriptional termination by providing signals in the newly synthesized transcript RNA that trigger processes which release the transcript RNA from the transcriptional complex.
[2] [3] The mRNA sequence is determined by the sequence of genomic DNA. [4] In this context, the standard genetic code is referred to as translation table 1. [3] It can also be represented in a DNA codon table. The DNA codons in such tables occur on the sense DNA strand and are arranged in a 5 ′-to-3 ′ direction.
The 3' UTR is found immediately following the translation stop codon. The 3' UTR plays a critical role in translation termination as well as post-transcriptional modification. [2] These often long sequences were once thought to be useless or junk mRNA that has simply accumulated over evolutionary time. However, it is now known that the ...
The termination of translation requires coordination between release factor proteins, the mRNA sequence, and ribosomes. Once a termination codon is read, release factors RF-1, RF-2, and RF-3 contribute to the hydrolysis of the growing polypeptide, which terminates the chain. Bases downstream the stop codon affect the activity of these release ...
In biology, translation is the process in living cells in which proteins are produced using RNA molecules as templates. The generated protein is a sequence of amino acids. This sequence is determined by the sequence of nucleotides in the RNA. The nucleotides are considered three at a time.
Both DNA and RNA are nucleic acids, which use base pairs of nucleotides as a complementary language. During transcription, a DNA sequence is read by an RNA polymerase, which produces a complementary, antiparallel RNA strand called a primary transcript. In virology, the term transcription is used when referring to mRNA synthesis from a viral RNA ...