Search results
Results from the WOW.Com Content Network
In mathematics, the degree of a polynomial is the highest of the degrees of the polynomial's monomials (individual terms) with non-zero coefficients. The degree of a term is the sum of the exponents of the variables that appear in it, and thus is a non-negative integer .
Degree: The maximum exponents among the monomials. Factor: An expression being multiplied. Linear factor: A factor of degree one. Coefficient: An expression multiplying one of the monomials of the polynomial. Root (or zero) of a polynomial: Given a polynomial p(x), the x values that satisfy p(x) = 0 are called roots (or zeroes) of the polynomial p.
where the indices ℓ and m (which are integers) are referred to as the degree and order of the associated Legendre polynomial respectively. This equation has nonzero solutions that are nonsingular on [−1, 1] only if ℓ and m are integers with 0 ≤ m ≤ ℓ , or with trivially equivalent negative values.
In mathematics, Legendre polynomials, named after Adrien-Marie Legendre (1782), are a system of complete and orthogonal polynomials with a wide number of mathematical properties and numerous applications. They can be defined in many ways, and the various definitions highlight different aspects as well as suggest generalizations and connections ...
Polynomials: Can be generated solely by addition, multiplication, and raising to the power of a positive integer. Constant function: polynomial of degree zero, graph is a horizontal straight line; Linear function: First degree polynomial, graph is a straight line. Quadratic function: Second degree polynomial, graph is a parabola.
A polynomial of degree zero is a constant polynomial, or simply a constant. Polynomials of degree one, two or three are respectively linear polynomials, quadratic polynomials and cubic polynomials. [8] For higher degrees, the specific names are not commonly used, although quartic polynomial (for degree four) and quintic polynomial (for degree ...
Finding the roots (zeros) of a given polynomial has been a prominent mathematical problem.. Solving linear, quadratic, cubic and quartic equations in terms of radicals and elementary arithmetic operations on the coefficients can always be done, no matter whether the roots are rational or irrational, real or complex; there are formulas that yield the required solutions.
Every polynomial in one variable x with real coefficients can be uniquely written as the product of a constant, polynomials of the form x + a with a real, and polynomials of the form x 2 + ax + b with a and b real and a 2 − 4b < 0 (which is the same thing as saying that the polynomial x 2 + ax + b has no real roots).