Search results
Results from the WOW.Com Content Network
Proof by exhaustion, also known as proof by cases, proof by case analysis, complete induction or the brute force method, is a method of mathematical proof in which the statement to be proved is split into a finite number of cases or sets of equivalent cases, and where each type of case is checked to see if the proposition in question holds. [1]
In the field of computer science, the method is called generate and test (brute force). In elementary algebra, when solving equations, it is called guess and check. [citation needed] This approach can be seen as one of the two basic approaches to problem-solving, contrasted with an approach using insight and theory.
The brute force approach entails two steps: For each possible policy, sample returns while following it; Choose the policy with the largest expected discounted return; One problem with this is that the number of policies can be large, or even infinite.
Brute force attacks can be made less effective by obfuscating the data to be encoded, something that makes it more difficult for an attacker to recognise when he has cracked the code. One of the measures of the strength of an encryption system is how long it would theoretically take an attacker to mount a successful brute force attack against it.
Some hobbyists have developed computer programs that will solve Sudoku puzzles using a backtracking algorithm, which is a type of brute force search. [3] Backtracking is a depth-first search (in contrast to a breadth-first search), because it will completely explore one branch to a possible solution before moving to another branch.
Brute force consists of checking all assignments of zeros and ones and counting those that have balanced rows and columns (n / 2 zeros and n / 2 ones). As there are 2 n 2 {\displaystyle 2^{n^{2}}} possible assignments and ( n n / 2 ) n {\displaystyle {\tbinom {n}{n/2}}^{n}} sensible assignments, this strategy is not practical except maybe up to ...
The Hodgkin–Huxley model can be thought of as a differential equation system with four state variables, (), (), (), and (), that change with respect to time . The system is difficult to study because it is a nonlinear system , cannot be solved analytically, and therefore has no closed-form solution.
Brute force method or proof by exhaustion, a method of mathematical proof Brute-force attack , a cryptanalytic attack Brute-force search , a computer problem-solving technique