enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mass-spring-damper model - Wikipedia

    en.wikipedia.org/wiki/Mass-spring-damper_model

    Classic model used for deriving the equations of a mass spring damper model. The mass-spring-damper model consists of discrete mass nodes distributed throughout an object and interconnected via a network of springs and dampers. This model is well-suited for modelling object with complex material properties such as nonlinearity and viscoelasticity.

  3. Standard linear solid model - Wikipedia

    en.wikipedia.org/wiki/Standard_Linear_Solid_model

    The first, referred to as the Maxwell arm, contains a spring (=) and dashpot (viscosity ) in series. [2] The other system contains only a spring ( E = E 1 {\displaystyle E=E_{1}} ). These relationships help relate the various stresses and strains in the overall system and the Maxwell arm:

  4. Series and parallel springs - Wikipedia

    en.wikipedia.org/wiki/Series_and_parallel_springs

    The following table gives formula for the spring that is equivalent to a system of two springs, in series or in parallel, whose spring constants are and . [1] The compliance c {\displaystyle c} of a spring is the reciprocal 1 / k {\displaystyle 1/k} of its spring constant.)

  5. Shock response spectrum - Wikipedia

    en.wikipedia.org/wiki/Shock_response_spectrum

    A Shock Response Spectrum (SRS) [1] is a graphical representation of a shock, or any other transient acceleration input, in terms of how a Single Degree Of Freedom (SDOF) system (like a mass on a spring) would respond to that input. The horizontal axis shows the natural frequency of a hypothetical SDOF, and the vertical axis shows the peak ...

  6. Simcenter Amesim - Wikipedia

    en.wikipedia.org/wiki/Simcenter_Amesim

    Simcenter Amesim libraries are written in C language, Python and also support Modelica, [1] which is a non-proprietary, object-oriented, equation based language to model complex physical systems containing, e.g., mechanical, electrical, electronic, hydraulic, thermal, control, electric power or process-oriented subcomponents.

  7. Maxwell material - Wikipedia

    en.wikipedia.org/wiki/Maxwell_material

    Diagram of a Maxwell material. The Maxwell model is represented by a purely viscous damper and a purely elastic spring connected in series, [4] as shown in the diagram. If, instead, we connect these two elements in parallel, [4] we get the generalized model of a solid Kelvin–Voigt material.

  8. Kelvin–Voigt material - Wikipedia

    en.wikipedia.org/wiki/Kelvin–Voigt_material

    Similarly, the total stress will be the sum of the stress in each component: [4] σ Total = σ S + σ D . {\displaystyle \sigma _{\text{Total}}=\sigma _{\rm {S}}+\sigma _{\rm {D}}.} From these equations we get that in a Kelvin–Voigt material, stress σ , strain ε and their rates of change with respect to time t are governed by equations of ...

  9. Scheil equation - Wikipedia

    en.wikipedia.org/wiki/Scheil_equation

    The fourth condition (straight solidus/liquidus segments) may be relaxed when numerical techniques are used, such as those used in CALPHAD software packages, though these calculations rely on calculated equilibrium phase diagrams. Calculated diagrams may include odd artifacts (i.e. retrograde solubility) that influence Scheil calculations.