enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Toughness - Wikipedia

    en.wikipedia.org/wiki/Toughness

    In materials science and metallurgy, toughness is the ability of a material to absorb energy and plastically deform without fracturing. [1] Toughness is the strength with which the material opposes rupture. One definition of material toughness is the amount of energy per unit volume that a material can absorb before rupturing.

  3. Hardness - Wikipedia

    en.wikipedia.org/wiki/Hardness

    The toughness of a material is the maximum amount of energy it can absorb before fracturing, which is different from the amount of force that can be applied. Toughness tends to be small for brittle materials, because elastic and plastic deformations allow materials to absorb large amounts of energy. Hardness increases with decreasing particle size.

  4. Hardnesses of the elements (data page) - Wikipedia

    en.wikipedia.org/wiki/Hardnesses_of_the_elements...

    Unsourced material may be challenged and removed. Find sources: "Hardnesses of the elements" data page – news · newspapers · books · scholar · JSTOR ( June 2022 ) ( Learn how and when to remove this message )

  5. List of materials properties - Wikipedia

    en.wikipedia.org/wiki/List_of_materials_properties

    A material property is an intensive property of a material, i.e., a physical property or chemical property that does not depend on the amount of the material. These quantitative properties may be used as a metric by which the benefits of one material versus another can be compared, thereby aiding in materials selection.

  6. Strengthening mechanisms of materials - Wikipedia

    en.wikipedia.org/wiki/Strengthening_mechanisms...

    This material exhibits an ultra-high hardness, higher than any reported ultrafine-grained nickel. The exceptional strength is resulted from the appearance of low-angle grain boundaries, which have low-energy states efficient for enhancing structure stability. Another method to stabilize grain boundaries is the addition of nonmetallic impurities.

  7. Fracture toughness - Wikipedia

    en.wikipedia.org/wiki/Fracture_toughness

    Fracture toughness is a quantitative way of expressing a material's resistance to crack propagation and standard values for a given material are generally available. Morphology of fracture surfaces in materials that display ductile crack growth is influenced by changes in specimen thickness.

  8. Stress–strain curve - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_curve

    A typical stress–strain curve for a brittle material will be linear. For some materials, such as concrete, tensile strength is negligible compared to the compressive strength and it is assumed to be zero for many engineering applications. Glass fibers have a tensile strength greater than that of steel, but bulk glass usually does not.

  9. Charpy impact test - Wikipedia

    en.wikipedia.org/wiki/Charpy_impact_test

    Impact tests on natural materials (can be considered as low-strength), such as wood, are used to study the material toughness and are subjected to a number of issues that include the interaction between the pendulum and a specimen as well as higher modes of vibration and multiple contacts between pendulum tup and the specimen. [14] [15] [16]