Search results
Results from the WOW.Com Content Network
A graph with a loop on vertex 1. In graph theory, a loop (also called a self-loop or a buckle) is an edge that connects a vertex to itself. A simple graph contains no loops. Depending on the context, a graph or a multigraph may be defined so as to either allow or disallow the presence of loops (often in concert with allowing or disallowing ...
The degree or valency of a vertex is the number of edges that are incident to it, where a loop is counted twice. The degree of a graph is the maximum of the degrees of its vertices. In an undirected simple graph of order n, the maximum degree of each vertex is n − 1 and the maximum size of the graph is n(n − 1) / 2 .
A graph with a loop having vertices labeled by degree. In graph theory, the degree (or valency) of a vertex of a graph is the number of edges that are incident to the vertex; in a multigraph, a loop contributes 2 to a vertex's degree, for the two ends of the edge. [1]
Simple graphs: Graphs without self-loops or multi-edges. Multi-edge graphs: Graphs allowing multiple edges between the same pair of nodes. Loopy graphs: Graphs that include self-loops (edges connecting a node to itself). Directed graphs: Models with specified in-degrees and out-degrees for each node. Undirected graphs: Models that consider the ...
Every vertex of this graph has an even degree. Therefore, this is an Eulerian graph. Following the edges in alphabetical order gives an Eulerian circuit/cycle. In graph theory, an Eulerian trail (or Eulerian path) is a trail in a finite graph that visits every edge exactly once (allowing for revisiting vertices).
Diagrams with loops (in graph theory, these kinds of loops are called cycles, while the word loop is an edge connecting a vertex with itself) correspond to the quantum corrections to the classical field theory. Because one-loop diagrams only contain one cycle, they express the next-to-classical contributions called the semiclassical contributions.
In an undirected graph, this means that each loop increases the degree of a vertex by two. In a directed graph, the term degree may refer either to indegree (the number of incoming edges at each vertex) or outdegree (the number of outgoing edges at each vertex).
In topology, the winding number is an alternate term for the degree of a continuous mapping. In physics, winding numbers are frequently called topological quantum numbers. In both cases, the same concept applies. The above example of a curve winding around a point has a simple topological interpretation.