Search results
Results from the WOW.Com Content Network
A graph with a loop on vertex 1. In graph theory, a loop (also called a self-loop or a buckle) is an edge that connects a vertex to itself. A simple graph contains no loops. Depending on the context, a graph or a multigraph may be defined so as to either allow or disallow the presence of loops (often in concert with allowing or disallowing ...
A graph with a loop having vertices labeled by degree. In graph theory, the degree (or valency) of a vertex of a graph is the number of edges that are incident to the vertex; in a multigraph, a loop contributes 2 to a vertex's degree, for the two ends of the edge. [1]
The degree or valency of a vertex is the number of edges that are incident to it, where a loop is counted twice. The degree of a graph is the maximum of the degrees of its vertices. In an undirected simple graph of order n, the maximum degree of each vertex is n − 1 and the maximum size of the graph is n(n − 1) / 2 .
The degree or valency of a vertex is the number of edges that are incident to it; for graphs with loops, a loop is counted twice. In a graph of order n, the maximum degree of each vertex is n − 1 (or n + 1 if loops are allowed, because a loop contributes 2 to the degree), and the maximum number of edges is n(n − 1)/2 (or n(n + 1)/2 if loops ...
In an undirected graph, this means that each loop increases the degree of a vertex by two. In a directed graph , the term degree may refer either to indegree (the number of incoming edges at each vertex) or outdegree (the number of outgoing edges at each vertex).
Simple graphs: Graphs without self-loops or multi-edges. Multi-edge graphs: Graphs allowing multiple edges between the same pair of nodes. Loopy graphs: Graphs that include self-loops (edges connecting a node to itself). Directed graphs: Models with specified in-degrees and out-degrees for each node. Undirected graphs: Models that consider the ...
The Moore bound is an inequality relating the degree, diameter, and order of a graph, proved by Edward F. Moore. Every Moore graph is a cage. multigraph A multigraph is a graph that allows multiple adjacencies (and, often, self-loops); a graph that is not required to be simple. multiple adjacency
The latter is more common in other applied sciences (e.g., dynamical systems, physics, network science) where A is sometimes used to describe linear dynamics on graphs. [6] Using the first definition, the in-degrees of a vertex can be computed by summing the entries of the corresponding column and the out-degree of vertex by summing the entries ...